Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Invest Dermatol ; 141(8): 2056-2066.e10, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33676947

RESUMO

Near-infrared (NIR) can penetrate the dermis. NIR is able to regulate cutaneous component cells and immune cells and shows significant anti-inflammatory therapeutic effects. However, the mechanisms of these effects are largely unknown. The purpose of this study is to elucidate NIR-induced molecular mechanisms on macrophages because macrophages play initial roles in directing immune responses by their M1 or M2 polarizations. Proteomic analysis revealed that NIR radiation enhanced the expression of mitochondrial respiratory gene citrate synthase. This increased citrate synthase expression was triggered by NIR-induced H3K4 hypermethylation on the citrate synthase gene promoter but not by heat, which led to macrophage M2 polarization and finally resulted in TGFß1 release from CD4+ cells. These cellular effects were validated in human primary macrophages and abdominal NIR-irradiated mouse experiments. In a phorbol 12-myristate 13-acetate‒induced inflammatory model on mouse ear, we confirmed that NIR irradiation induced significant anti-inflammatory effects through decreased M1 counts, reduced TNF-α, and increased CCL22 and/or TGFß1 levels.


Assuntos
Dermatite/terapia , Raios Infravermelhos/uso terapêutico , Macrófagos/imunologia , Fototerapia/métodos , Animais , Citrato (si)-Sintase/metabolismo , Dermatite/imunologia , Derme/citologia , Derme/imunologia , Derme/metabolismo , Derme/efeitos da radiação , Modelos Animais de Doenças , Feminino , Humanos , Ativação de Macrófagos/efeitos da radiação , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/efeitos da radiação , Cultura Primária de Células , Células THP-1
2.
J Microbiol Immunol Infect ; 49(1): 104-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24582465

RESUMO

BACKGROUND: Diseases caused by infectious and inflammatory microorganisms are among the most common and most severe nosocomial diseases worldwide. Therefore, developing effective agents for treating these illnesses is critical. In this study, essential oils from two tea tree species, kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium), were evaluated for use in treating diseases and inflammation caused by microorganism infection. METHODS: Isolates of clinically common bacteria and fungi were obtained from American Type Culture Collection and from Kaohsiung Veterans General Hospital. Minimum inhibitory concentrations for Trichosporon mucoides, Malassezia furfur, Candida albicans, and Candida tropicalis were determined by the broth microdilution method with Sabouraud dextrose broth. The antibacterial susceptibility of Staphylococcus aureus, Streptococcus sobrinus, Streptococcus mutans, and Escherichia coli were determined by the broth microdilution method. A human acute monocytic leukemia cell line (THP-1) was cultured to test the effects of the essential oils on the release of the two inflammatory cytokines, tumor necrosis factor-α and interleukin-4. RESULTS: Multiple analyses of microorganism growth confirmed that both essential oils significantly inhibited four fungi and the four bacteria. The potent fungicidal properties of the oils were confirmed by minimum inhibitory concentrations ranging from 0.78% to 3.13%. The oils also showed excellent bactericidal qualities with 100% inhibition of the examined bacteria. In THP-1 cells, both oils lowered tumor necrosis factor-α released after lipopolysaccharide stimulation. Finally, the antimicrobial and anti-inflammatory effects of the oils were obtained without adversely affecting the immune system. CONCLUSION: These results indicate that the potent antimicroorganism and anti-inflammation properties of kanuka and manuka essential oils make them strong candidates for use in treating infections and immune-related disease. The data confirm the potential use of kanuka and manuka extracts as pharmaceutical antibiotics, medical cosmetology agents, and food supplements.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Humanos , Interleucina-4/metabolismo , Kunzea/química , Leptospermum/química , Testes de Sensibilidade Microbiana , Óleos Voláteis/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo
3.
J Biosci Bioeng ; 119(4): 464-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25311751

RESUMO

In our study, it was applied for the technology of supercritical fluid carbon dioxide extraction to achieve biological constitutes from a Taiwan native plant, Polygonum cuspidatum. We developed bioactive effects of P. cuspidatum extracts via multiple examinations that established bio-purposes at a range of dosage ranges. The research of P. cuspidatum extracts indicated that they possessed anti-oxidative properties on radical-scavenging abilities, reducing activities and metal chelating powers in dose-dependant manners. The extracts also had minor in vitro mushroom tyrosinase suppression and decreased cellular tyrosinase activities and melanin production in B16-F10 cells. Immunologically, P. cuspidatum extracts enhanced the release of tumor necrosis factor α (TNF-α) induced by THP-1 macrophage cell line. In addition, the cell proliferation showed anti-proliferation in dose-dependent manner on human skin melanoma cells, A375 and A375.S2, of the extracts suggesting biological constitutes employed the anti-cancer possessions. This is the first statement presenting bioactivities on P. cuspidatum extracts including anti-oxidation, immune stimulation, anti-tyrosinase and anti-melanoma as far as we know.


Assuntos
Antineoplásicos/farmacologia , Fallopia japonica/química , Imunidade/efeitos dos fármacos , Melanoma/patologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Agaricales/enzimologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia com Fluido Supercrítico , Humanos , Imunidade/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Melaninas/biossíntese , Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/metabolismo , Oxirredução/efeitos dos fármacos , Taiwan
4.
Mediators Inflamm ; 2014: 625048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24692853

RESUMO

Low-level laser therapy (LLLT) has been used in the treatment of radiotherapy-induced oral mucositis and allergic rhinitis. However, the effects of LLLT on human monocyte polarization into M1 macrophages are unknown. To evaluate the effects of LLLT on M1-related cytokine and chemokine production and elucidate the mechanism, the human monocyte cell line THP-1 was treated with different doses of LLLT. The expression of M1-related cytokines and chemokines (CCL2, CXCL10, and TNF-α) was determined by ELISA and real-time PCR. LLLT-associated histone modifications were examined by chromatin immunoprecipitation (ChIP) assays. Mitochondrial involvement in the LLLT-induced M1-related cytokine expression was evaluated by quantitative real-time PCR. Flow cytometry was used to detect the cell surface markers for monocyte polarization. The results showed that LLLT (660 nm) significantly enhanced M1-related cytokine and chemokine expression in mRNA and protein levels. Mitochondrial copy number and mRNA levels of complex I-V protein were increased by LLLT (1 J/cm(2)). Activation of M1 polarization was concomitant with histone modification at TNF-α gene locus and IP-10 gene promoter area. This study indicates that LLLT (660 nm) enhanced M1-related cytokine and chemokine expression via mitochondrial biogenesis and histone modification, which may be a potent immune-enhancing agent for the treatment of allergic diseases.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Histonas/química , Terapia com Luz de Baixa Intensidade , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Cromatina/química , Humanos , Inflamação , Lasers , Mitocôndrias/metabolismo , Monócitos/citologia , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/metabolismo
5.
Toxicol Appl Pharmacol ; 193(2): 209-17, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14644623

RESUMO

Gallium is commonly used in the semiconductor industry and medical field. Biologically, gallium is able to interrupt iron metabolism. Exposure to gallium has been shown to affect the human immune system. The purpose of this study was to investigate the in vitro biological effects of different gallium concentrations on cultured human peripheral blood mononuclear cells (PBMCs) in terms of cell growth, cytokine release, and apoptosis induction. In addition, the in vivo effects of gallium were analyzed by Wistar rat model. Our results revealed that low concentrations (1-10 microg/ml) of gallium promoted cells to enter the S phase of cell cycle and enhanced cellular release of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, both in vitro and in vivo. In contrast, high concentrations of gallium (50-100 microg/ml) induced apoptosis. Furthermore, gallium-induced cytokine release and apoptosis could be inhibited by iron-saturated transferrin (Tf-Fe). These results suggest that the concentration-dependent effects of gallium on PBMCs are related to iron metabolism.


Assuntos
Adjuvantes Imunológicos/toxicidade , Apoptose/efeitos dos fármacos , Gálio/toxicidade , Imunidade Celular/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Adulto , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , DNA/análise , Relação Dose-Resposta a Droga , Gálio/administração & dosagem , Humanos , Injeções Intravenosas , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transferrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA