Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 845: 157277, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835196

RESUMO

Tree species richness has been recognized as an underlying driving factor for regulating soil phosphorus (P) status in many site-specific studies. However, it remains poorly understood whether this is true at broad scales where soil P strongly rely on climate, soil type and vegetation type. Here, based on the data of 946 mature natural forest sites from a nationwide field survey in China, we analyzed the impact of tree species richness on soil P density of China's mature natural forests (deciduous coniferous forest, DCF; evergreen coniferous forest, ECF; deciduous broad-leaved forest, DBF; evergreen broad-leaved forest, EBF; and mixed coniferous and broad-leaved forest, MF). Our results showed that tree species richness had a negative effect on soil P density in China's mature natural forests. The Random Forest regression model showed that the relative importance of tree species richness to soil P density was second only to the climate factors (mean annual temperature, MAT; mean annual precipitation, MAP). In addition, the structural equation model (SEM) results showed that the goodness fit of SEM increased when the tree species richness was included into the model. These results suggested that tree species richness was an important factor in regulating the China's mature natural forests soil P density. Furthermore, the SEM results showed that the decreased soil P density was related to the increase in ANPP and the decrease in litter P concentration induced by tree species richness. This result indicates that tree species richness could facilitate plant P absorption and inhibit plant P return into the soil, and thus reducing the soil P density in China's mature natural forests. In conclusion, we found tree species richness was an important biotic factor in regulating soil P density at broad scales, which should be fully considered in Earth models that represent P cycle.


Assuntos
Fósforo , Solo , China , Clima , Fósforo/análise , Plantas , Solo/química , Temperatura
2.
Bioresour Technol ; 357: 127312, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35577221

RESUMO

The addition of external carbon sources is crucial for effective biological treatment of nutrient-rich but carbon-depleted hydroponic wastewater using constructed wetlands. In this study, we examined the effects of applying three types of carbon substrates, namely sucrose, hydroponic kale residues, and common reed litter, on the nutrient removal efficiency and greenhouse gas emission rate of vertical flow constructed wetlands. The addition of sucrose and common reed litter was shown to perform equally well in enhancing the removal of total nitrogen (84.9-93.5%), nitrate (98.3-99.8%) and phosphate (53.8-55.2%) as compared to the control. Moreover, the application of common reed litter led to significantly lower mean CH4 and N2O emissions than that of kale residues. These findings suggested that Phragmites reed litter, which is easily found in wetlands worldwide, could be an effective, low-cost and climate-friendly carbon substrate to be applied in constructed wetlands for hydroponic wastewater treatment.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Carbono , Gases de Efeito Estufa/análise , Hidroponia , Metano/análise , Nitrogênio , Óxido Nitroso/análise , Nutrientes , Sacarose , Águas Residuárias/análise
3.
Glob Chang Biol ; 28(13): 4085-4096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35412664

RESUMO

Phosphorus (P) is often one of the most limiting nutrients in highly weathered soils of humid tropical forests and may regulate the responses of carbon (C) feedback to climate warming. However, the response of P to warming at the ecosystem level in tropical forests is not well understood because previous studies have not comprehensively assessed changes in multiple P processes associated with warming. Here, we detected changes in the ecosystem P cycle in response to a 7-year continuous warming experiment by translocating model plant-soil ecosystems across a 600-m elevation gradient, equivalent to a temperature change of 2.1°C. We found that warming increased plant P content (55.4%) and decreased foliar N:P. Increased plant P content was supplied by multiple processes, including enhanced plant P resorption (9.7%), soil P mineralization (15.5% decrease in moderately available organic P), and dissolution (6.8% decrease in iron-bound inorganic P), without changing litter P mineralization and leachate P. These findings suggest that warming sustained plant P demand by increasing the biological and geochemical controls of the plant-soil P-cycle, which has important implications for C fixation in P-deficient and highly productive tropical forests in future warmer climates.


Assuntos
Ecossistema , Fósforo , Ciclo do Carbono , Florestas , Solo/química , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA