Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 54(8): 6356-6377, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27722926

RESUMO

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces motor and nonmotor dysfunctions resembling Parkinson's disease (PD); however, studies investigating the effects of 1-methyl-4-phenylpyridinium (MPP+), an active oxidative product of MPTP, are scarce. This study investigated the behavioral and striatal neurochemical changes (related to oxidative damage, glial markers, and neurotrophic factors) 24 h after intracerebroventricular administration of MPP+ (1.8-18 µg/mouse) in C57BL6 mice. MPP+ administration at high dose (18 µg/mouse) altered motor parameters, since it increased the latency to leave the first quadrant and reduced crossing, rearing, and grooming responses in the open-field test and decreased rotarod latency time. MPP+ administration at low dose (1.8 µg/mouse) caused specific nonmotor dysfunctions as it produced a depressive-like effect in the forced swim test and tail suspension test, loss of motivational and self-care behavior in the splash test, anxiety-like effect in the elevated plus maze test, and short-term memory deficit in the step-down inhibitory avoidance task, without altering ambulation. MPP+ at doses of 1.8-18 µg/mouse increased tyrosine hydroxylase (TH) immunocontent and at 18 µg/mouse increased α-synuclein and decreased parkin immunocontent. The astrocytic calcium-binding protein S100B and glial fibrillary acidic protein (GFAP)/S100B ratio was decreased following MPP+ administration (18 µg/mouse). At this highest dose, MPP+ increased the ionized calcium-binding adapter molecule 1 (Iba-1) immunocontent, suggesting microglial activation. Also, MPP+ at a dose of 18 µg/mouse increased thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and increased glutathione peroxidase (GPx) and hemeoxygenase-1 (HO-1) immunocontent, suggesting a significant role for oxidative stress in the MPP+-induced striatal damage. MPP+ (18 µg/mouse) also increased striatal fibroblast growth factor 2 (FGF-2) and brain-derived neurotrophic factor (BDNF) levels. Moreover, MPP+ decreased tropomyosin receptor kinase B (TrkB) immunocontent. Finally, MPP+ (1.8-18 µg/mouse) increased serum corticosterone levels and did not alter acetylcholinesterase (AChE) activity in the striatum but increased it in cerebral cortex and hippocampus. Collectively, these results indicate that MPP+ administration at low doses may be used as a model of emotional and memory/learning behavioral deficit related to PD and that MPP+ administration at high dose could be useful for analysis of striatal dysfunctions associated with motor deficits in PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Corpo Estriado/efeitos dos fármacos , Emoções/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Corpo Estriado/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Camundongos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
2.
Neurochem Int ; 95: 4-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26804444

RESUMO

Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 µM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 µM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments.


Assuntos
Creatina/farmacologia , Ácido Glutâmico/toxicidade , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Hipocampo/metabolismo , Humanos , Camundongos , Nitrosação/efeitos dos fármacos , Nitrosação/fisiologia , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
3.
Autoimmunity ; 49(2): 132-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26703077

RESUMO

Multiple sclerosis (MS) is an autoimmune demyelinating inflammatory disease characterized by recurrent episodes of T cell-mediated immune attack on central nervous system (CNS) myelin, leading to axon damage and progressive disability. The existing therapies for MS are only partially effective and are associated with undesirable side effects. Low-level laser therapy (LLLT) has been clinically used to treat inflammation, and to induce tissue healing and repair processes. However, there are no reports about the effects and mechanisms of LLLT in experimental autoimmune encephalomyelitis (EAE), an established model of MS. Here, we report the effects and underlying mechanisms of action of LLLT (AlGaInP, 660 nm and GaAs, 904 nm) irradiated on the spinal cord during EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG35-55 peptide emulsified in complete Freund's adjuvant. Our results showed that LLLT consistently reduced the clinical score of EAE and delayed the disease onset, and also prevented weight loss induced by immunization. Furthermore, these beneficial effects of LLLT seem to be associated with the down-regulation of NO levels in the CNS, although the treatment with LLLT failed to inhibit lipid peroxidation and restore antioxidant defense during EAE. Finally, histological analysis showed that LLLT blocked neuroinflammation through a reduction of inflammatory cells in the CNS, especially lymphocytes, as well as preventing demyelination in the spinal cord after EAE induction. Together, our results suggest the use of LLLT as a therapeutic application during autoimmune neuroinflammatory responses, such as MS.


Assuntos
Terapia com Luz de Baixa Intensidade , Esclerose Múltipla/patologia , Animais , Antioxidantes/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental , Feminino , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA