Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 63: 153005, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302316

RESUMO

BACKGROUND: 8-Hydroxyquinoline derivatives have highly sensitive fluorescent chemosensors for metal ions, which are associated with anti-oxidant, anti-tumor and anti-HIV-1 properties. Head and neck squamous cell carcinoma (HNSCC) is associated with a high rate of mortality and novel anti-HNSCC drugs must be developed. Therefore, effective chemotherapy agents are required to address this public health issue. HYPOTHESIS/PURPOSE: The aim of this study was to investigate the inhibitory effect of tris(8-hydroxyquinoline)iron (Feq3) on the HNSCC and the underlying mechanism. STUDY DESIGN/METHODS: A novel 8-hydroxyquinoline derivative, Feq3, was synthesized. The cell viabilities were analyzed using MTT reagent. Apoptosis and the cell cycle distributions were determined by flow cytometer. Reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, western blot, MitoSOX and CellROX stain assay were used to study the mechanism of Feq3. Feq3 combined with antioxidants NAC (N-acetylcysteine) and BSO (buthionine sulfoximine) measured the cell viability and intracellular ROS. RESULTS: Feq3 induced the death of HNSCC cells and caused them to exhibit the morphological features of apoptosis. Feq3 also induced apoptosis of SCC9 cells by cell cycle arrest during the G2/M phase and the induced arrest of SCC25 cells in the G0/G1 and G2/M phases, which was associated with decreased cyclin B1/cdc2 and cyclin D/cdk4 expressions. Feq3 increases reactive oxygen species (ROS) and reduces glutathione (GSH) levels, and responds to increased p53 and p21 expressions. Feq3 induced apoptosis by mitochondria-mediated Bax and cytochrome c up-expression and down-expression Bcl-2. Feq3 also up-regulated tBid, which interacts with the mitochondrial pathway and tumor necrosis factor-α (TNF-α)/TNF-Rs, FasL/Fas, and TNF-related apoptosis inducing ligand receptors (TRAIL-Rs)/TRAIL-dependent caspases apoptotic signaling pathway in HNSCC cells. However, Feq3 activates Fas but not FasL in SCC25 cells. Feq3 arrests the growth of HNSCC cells and is involved in the mitochondria- and death receptor (DR)-mediated caspases apoptotic pathway. CONCLUSION: This study is the first to suggest that apoptosis mediates the anti-HNSCC of Feq3. Feq3 has potential as a cancer therapeutic agent against HNSCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Hidroxiquinolinas/farmacologia , Compostos de Ferro/farmacologia , Ferro/química , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/farmacologia , Apoptose/fisiologia , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Proteína Ligante Fas/metabolismo , Glutationa/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Compostos de Ferro/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Food Chem Toxicol ; 50(3-4): 779-89, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22222928

RESUMO

Toona sinensis Roem (T. sinensis) leaves have been used as a nutritious vegetable and been suggested for medical applications; however, the reported bioactive compounds of T. sinensis leaves are, so far, from high to mid-high polar extracts. Our aims in this study were to reveal the non-polar constituents of the T. sinensis leave extract that were prepared by a method of using a supercritical-CO2 fluid and to investigate the anti-diabetic potential of this extract. Through a GC/MS analysis, we revealed 24 major components of the non-polar T. sinensis leave extract, the most abundant of which was phytol. The non-polar T. sinensis leave extract showed to prevent the progression of diabetes and hepatosteatosis, the rise of triglycerol levels and the decrease of adiponectin levels in the type 2 diabetic mice. Our results suggest that the non-polar extract of T. sinensis leaves prepared using the supercritical-CO2 fluid may contain effective constituents to prevent type 2 diabetes.


Assuntos
Cromatografia com Fluido Supercrítico , Hipoglicemiantes/farmacologia , Meliaceae/química , Extratos Vegetais/farmacologia , Células 3T3-L1 , Animais , Dióxido de Carbono/química , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA