Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Death Discov ; 9(1): 81, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872341

RESUMO

Prostate cancer (PCa) is a leading cause of death in the male population commonly treated with androgen deprivation therapy that often relapses as androgen-independent and aggressive castration-resistant prostate cancer (CRPC). Ferroptosis is a recently described form of cell death that requires abundant cytosolic labile iron to promote membrane lipid peroxidation and which can be induced by agents that inhibit the glutathione peroxidase-4 activity such as RSL3. Exploiting in vitro and in vivo human and murine PCa models and the multistage transgenic TRAMP model of PCa we show that RSL3 induces ferroptosis in PCa cells and demonstrate for the first time that iron supplementation significantly increases the effect of RSL3 triggering lipid peroxidation, enhanced intracellular stress and leading to cancer cell death. Moreover, the combination with the second generation anti-androgen drug enzalutamide potentiates the effect of the RSL3 + iron combination leading to superior inhibition of PCa and preventing the onset of CRPC in the TRAMP mouse model. These data open new perspectives in the use of pro-ferroptotic approaches alone or in combination with enzalutamide for the treatment of PCa.

2.
Pharmacol Res ; 189: 106683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736415

RESUMO

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Assuntos
Canabidiol , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Canabidiol/farmacologia , Morte Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Fosforilação Oxidativa , Carcinogênese/metabolismo , Hormônios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
3.
Biomolecules ; 11(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34356677

RESUMO

In continuing our investigation on the chemical diversity of Algerian plants, we examined Centaurea omphalotricha, whose chemical composition has been poorly studied. The present work was aimed at characterizing the secondary metabolite pattern of the CHCl3 extract of the aerial parts of this plant that displayed antiproliferative properties in a preliminary screening on HeLa cell line. The chemical analysis led us to characterize the bioactive oxygenated terpenoid fraction which includes, within major known metabolites, two new minor sesquiterpene lactones, centaurolide-A (1) and centaurolide-B (2). The structures of two compounds exhibiting the 12,8-guaianolide skeleton were determined by spectroscopic methods as well as by chemical correlation with inuviscolide (3), a well-known bioactive guaianolide isolated from Dittrichia (=Inula) viscosa. Centaurolides A and B represent the first report of 8,12-guaianolide skeleton in Centaurea genus. The effect of new compounds 1 and 2 and inuviscolide (3) on HeLa cell has also been evaluated.


Assuntos
Centaurea/química , Lactonas/química , Sesquiterpenos de Guaiano/química , Argélia , Sobrevivência Celular/efeitos dos fármacos , Centaurea/metabolismo , Células HeLa , Humanos , Lactonas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Metabolismo Secundário , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos de Guaiano/farmacologia
4.
J Med Chem ; 63(13): 7369-7391, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515588

RESUMO

The hallmark of joint diseases, such as osteoarthritis (OA), is pain, originating from both inflammatory and neuropathic components, and compounds able to modulate the signal transduction pathways of the cannabinoid type-2 receptor (CB2R) can represent a helpful option in the treatment of OA. In this perspective, a set of 18 cannabinoid type-2 receptor (CB2R) ligands was developed based on an unprecedented structure. With the aim of improving the physicochemical properties of previously reported 4-hydroxy-2-quinolone-3-carboxamides, a structural optimization program led to the discovery of isosteric 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives. These new compounds are endowed with high affinity for the CB2R and moderate to good selectivity over the cannabinoid type-1 receptor (CB1R), associated with good physicochemical characteristics. As to the functional activity at the CB2R, compounds able to act either as agonists or as inverse agonists/antagonists were discovered. Among them, compound 51 emerged as a potent CB2R agonist able to reduce pain in rats carrying OA induced by injection of monoiodoacetic acid (MIA).


Assuntos
Antiasmáticos/farmacologia , Condrócitos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , 4-Quinolonas/química , Animais , Antiasmáticos/química , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Condrócitos/metabolismo , Condrócitos/patologia , Colforsina/farmacologia , Cricetulus , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ácido Iodoacético/toxicidade , Ligantes , Masculino , Camundongos , Células NIH 3T3 , Osteoartrite/induzido quimicamente , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Relação Estrutura-Atividade , Caminhada
5.
Molecules ; 24(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247911

RESUMO

Phenolic profiling of ten plant samples of Mentha rotundifolia (L.) Huds. collected from different bioclimatic areas of Tunisia, was for the first time carried out by using a fast ultra-high-performance liquid chromatography (UHPLC)-high resolution tandem mass spectrometry (HRMS/MS) method on a Q Exactive platform equipped with an electrospray ionization (ESI) source. An intraspecific, interpopulation variability was evidenced and a total of 17 polyphenolic metabolites were identified and quantified by using the UHPLC-HRESIMS/MS method, here validated for specificity, linearity, limit of detection, limit of quantitation, accuracy and precision. The quantitative method resulted sensitive at the nM level and reliable for rapid polyphenol quantification in vegetal matrices. The metabolomic study allowed us to identify a new compound, named salvianolic acid W, which was isolated and characterized mainly by NMR and MS analysis. A statistical correlation of the phenolic composition with antioxidant and anti-acetylcholinesterase activities was provided.


Assuntos
Mentha/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Tunísia
6.
Br J Pharmacol ; 163(7): 1479-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21175579

RESUMO

BACKGROUND AND PURPOSE: Cannabidiol (CBD) and Δ(9) -tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. EXPERIMENTAL APPROACH: The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. KEY RESULTS: CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. CONCLUSIONS AND IMPLICATIONS: These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Canabinoides/farmacologia , Cannabis/química , Endocanabinoides , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Amidas , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Células COS , Chlorocebus aethiops , Etanolaminas , Glicerídeos/metabolismo , Células HEK293 , Humanos , Lipase Lipoproteica/metabolismo , Monoacilglicerol Lipases/metabolismo , Ácidos Palmíticos/metabolismo , Extratos Vegetais/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Canais de Potencial de Receptor Transitório/metabolismo
7.
Bioorg Med Chem Lett ; 20(3): 1210-3, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20022504

RESUMO

N-Acylethanolamines, including N-palmitoyl-ethanolamine (PEA), are hydrolyzed to the corresponding fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). Recently, N-acylethanolamine-hydrolyzing acid amidase (NAAA) was identified as being able to specifically hydrolyze PEA. In order to find selective and effective inhibitors of this enzyme, we synthesized and screened several amides, retroamides, esters, retroesters and carbamates of palmitic acid (1-21) and esters with C15 and C17 alkyl chains (22-27). Cyclopentylhexadecanoate (13) exhibited the highest inhibitory activity on NAAA (IC(50)=10.0 microM), without inhibiting FAAH up to 50 microM. Compound 13 may become a useful template to design new NAAA inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Palmíticos/síntese química , Amidas , Amidoidrolases/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Endocanabinoides , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Etanolaminas , Humanos , Hidrólise , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Relação Estrutura-Atividade
8.
J Nutr ; 139(8): 1495-501, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19549757

RESUMO

Dietary (n-3) long-chain PUFA [(n-3) LCPUFA] ameliorate several metabolic risk factors for cardiovascular diseases, although the mechanisms of these beneficial effects are not fully understood. In this study, we compared the effects of dietary (n-3) LCPUFA, in the form of either fish oil (FO) or krill oil (KO) balanced for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, with a control (C) diet containing no EPA and DHA and similar contents of oleic, linoleic, and alpha-linolenic acids, on ectopic fat and inflammation in Zucker rats, a model of obesity and related metabolic dysfunction. Diets were fed for 4 wk. Given the emerging evidence for an association between elevated endocannabinoid concentrations and metabolic syndrome, we also measured tissue endocannabinoid concentrations. In (n-3) LCPUFA-supplemented rats, liver triglycerides and the peritoneal macrophage response to an inflammatory stimulus were significantly lower than in rats fed the control diet, and heart triglycerides were lower, but only in KO-fed rats. These effects were associated with a lower concentration of the endocannabinoids, anandamide and 2-arachidonoylglycerol, in the visceral adipose tissue and of anandamide in the liver and heart, which, in turn, was associated with lower levels of arachidonic acid in membrane phospholipids, but not with higher activity of endocannabinoid-degrading enzymes. Our data suggest that the beneficial effects of a diet enriched with (n-3) LCPUFA are the result of changes in membrane fatty acid composition. The reduction of substrates for inflammatory molecules and endocannabinoids may account for the dampened inflammatory response and the physiological reequilibration of body fat deposition in obese rats.


Assuntos
Anti-Inflamatórios/uso terapêutico , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Gordura Intra-Abdominal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Coristoma/tratamento farmacológico , Coristoma/metabolismo , Gorduras na Dieta/farmacologia , Gorduras na Dieta/uso terapêutico , Modelos Animais de Doenças , Euphausiacea , Ácidos Graxos Ômega-3/farmacologia , Glicerídeos/metabolismo , Coração/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Obesidade/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Zucker , Frutos do Mar , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Curr Opin Chem Biol ; 13(3): 309-20, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457702

RESUMO

The identification of the major psychoactive constituent of Cannabis and marijuana, Delta(9)-tetrahydrocannabinol, opened the way first to the cloning of the G-protein-coupled cannabinoid CB(1) and CB(2) receptors, and then to the isolation and characterisation of their endogenous agonists, the endocannabinoids. Considerable progress has been made in the characterisation of pathways and enzymes for the biosynthesis and degradation of anandamide and 2-arachidonoylglycerol, the two best-known endocannabinoids, as well as of endocannabinoid-related molecules, such as the N-acylethanolamines, which, as in the case of N-palmitoylethanolamine and N-oleoylethanolamine, may interact with other receptor types. However, it is still not fully understood how other plant cannabinoids, of which cannabidiol is the most studied representative, exert their pharmacological effects. Together with these issues, this first review article on the endocannabinoids describes the synthetic pharmacological tools that have been designed so far to interact with the proteins of the 'endocannabinoid system' and that can potentially be used as templates for the development of new therapies.


Assuntos
Moduladores de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Amidoidrolases/antagonistas & inibidores , Animais , Agonistas de Receptores de Canabinoides , Antagonistas de Receptores de Canabinoides , Moduladores de Receptores de Canabinoides/uso terapêutico , Química Farmacêutica , Descoberta de Drogas , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Monoacilglicerol Lipases/antagonistas & inibidores
10.
J Med Chem ; 52(12): 3644-51, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19435366

RESUMO

The CB(2) receptor activation can be exploited for the treatment of diseases such as chronic pain and tumors of immune origin, devoid of psychotropic activity. On the basis of our already reported 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives, new 1,8-naphthyridin-2(1H)-on-3-carboxamide derivatives were designed, synthesized, and tested for their affinities toward the human CB(1) and CB(2) cannabinoid receptors. Some of the reported compounds showed a subnanomolar CB(2) affinity with a CB(1)/CB(2) selectivity ratio greater than 200 (compounds 6, 12, cis-12, 13, and cis-13). Further studies revealed that compound 12, which presented benzyl and carboxy-4-methylcyclohexylamide substituents bound in the 1 and 3 positions, exerted a CB(2)-mediated inhibitory action on immunological human basophil activation. On the human T cell leukemia line Jurkat the same derivative induced a concentration-dependent decrease of cell viability. The obtained results suggest that 1,8-naphthyridin-2(1H)-on-3-carboxamides represent a new scaffold very suitable for the development of new promising CB(2) agonists.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Naftiridinas/síntese química , Naftiridinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Células Jurkat , Modelos Moleculares , Estrutura Molecular , Naftiridinas/química , Receptor CB1 de Canabinoide/agonistas , Relação Estrutura-Atividade
11.
J Pharmacol Exp Ther ; 312(2): 561-70, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15356216

RESUMO

Olvanil (N-9-Z-octadecenoyl-vanillamide) is an agonist of transient receptor potential vanilloid type 1 (TRPV1) channels that lack the pungency of capsaicin and was developed as an oral analgesic. Vanillamides are unmatched in terms of structural simplicity, straightforward synthesis, and safety compared with the more powerful TRPV1 agonists, like the structurally complex phorboid compound resiniferatoxin. We have modified the fatty acyl chain of olvanil to obtain ultra-potent analogs. The insertion of a hydroxyl group at C-12 yielded a compound named rinvanil, after ricinoleic acid, significantly less potent than olvanil (EC(50) = 6 versus 0.7 nM), but more versatile in terms of structural modifications because of the presence of an additional functional group. Acetylation and phenylacetylation of rinvanil re-established and dramatically enhanced, respectively, its potency at hTRPV1. With a two-digit picomolar EC(50) (90 pM), phenylacetylrinvanil (PhAR, IDN5890) is the most potent vanillamide ever described with potency comparable with that of resiniferatoxin (EC(50), 11 pM). Benzoyl- and phenylpropionylrinvanil were as potent and less potent than PhAR, respectively, whereas configurational inversion to ent-PhAR and cyclopropanation (but not hydrogenation or epoxidation) of the double bond were tolerated. Finally, iodination of the aromatic hydroxyl caused a dramatic switch in functional activity, generating compounds that behaved as TRPV1 antagonists rather than agonists. Since the potency of PhAR was maintained in rat dorsal root ganglion neurons and, particularly, in the rat urinary bladder, this compound was investigated in an in vivo rat model of urinary incontinence and proved as effective as resiniferatoxin at reducing bladder detrusor overactivity.


Assuntos
Capsaicina/análogos & derivados , Capsaicina/uso terapêutico , Canais Iônicos/agonistas , Amidoidrolases/metabolismo , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Araquidônicos/metabolismo , Capsaicina/síntese química , Capsaicina/química , Capsaicina/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Endocanabinoides , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Neurônios/efeitos dos fármacos , Alcamidas Poli-Insaturadas , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/efeitos dos fármacos , Relação Estrutura-Atividade , Canais de Cátion TRPV , Bexiga Urinária/efeitos dos fármacos , Incontinência Urinária/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA