Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0286222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220119

RESUMO

Supplementation with Fortetropin® (FOR), a naturally occurring component from fertilized egg yolks, reduces circulating myostatin concentration. We hypothesized that FOR would mitigate muscle atrophy during immobilization. We examined the effect of FOR supplementation on muscle size and strength during 2-wk of single-leg immobilization and recovery. Twenty-four healthy young men (22 ± 2 yrs; BMI = 24.3 ± 2.9 kg/m2) were randomly allocated to either a Fortetropin® supplement (FOR-SUPP, n = 12) group consuming 19.8 g/d of FOR or placebo (PLA-SUPP, n = 12) group consuming energy- and macronutrient-matched cheese powder for 6-wk. The 6-wk period consisted of 2-wk run-in, 2-wk single-leg immobilization, and 2-wk recovery phase returning to habitual physical activities. Ultrasonography, dual-energy X-ray absorptiometry, muscle biopsies and isometric peak torque assessments were performed prior to and following each phase (days 1, 14, 28, and 42) to measure vastus lateralis and muscle fiber cross-section area (CSA), leg lean mass (LM), and muscular strength. Blood samples were taken on days 1 and 42 for measurement of plasma myostatin concentration, which increased in PLA-SUPP (4221 ± 541 pg/mL to 6721 ± 864 pg/mL, P = 0.013) but not in FOR-SUPP (5487 ± 489 pg/mL to 5383 ± 781 pg/mL, P = 0.900). After the immobilization phase, vastus lateralis CSA, LM, and isometric peak torque were decreased by 7.9 ± 1.7% (P < 0.001), -1.6 ± 0.6% (P = 0.037), and -18.7 ± 2.7% (P < 0.001) respectively, with no difference between groups. The decreased peak torque was recovered after 2-wk of normal activity (vs. day 1, P = 0.129); however, CSA and LM were not recovered (vs. day 1, P < 0.001 and P = 0.003, respectively), with no differences between groups. Supplementation with FOR prevented the rise in circulating myostatin but not disuse-induced muscle atrophy in young men after 2-wk of single-leg immobilization.


Assuntos
Atrofia Muscular , Miostatina , Humanos , Masculino , Suplementos Nutricionais , Fibras Musculares Esqueléticas , Poliésteres , Adulto Jovem , Imobilização
2.
Appl Physiol Nutr Metab ; 47(11): 1104-1114, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126327

RESUMO

Leucine is a critical amino acid stimulating myofibrillar protein synthesis (MyoPS). The consumption of higher leucine-containing drinks stimulates MyoPS, but we know less about higher leucine solid foods. Here, we examined the effect of short-term resistance exercise training (STRT) combined with supplementation of a protein and leucine-enriched bar, compared with STRT alone, on integrated (%/day) rates of MyoPS and anabolic protein signaling. In a nonblinded, randomized crossover trial, eight young adults performed four sessions of STRT without or while consuming the study bar (STRT+Leu, 16 g of protein containing ∼3 g of leucine) for two 4-day phases, separated by 2 days nonexercise (Rest) washout. In combination with serial muscle biopsies, deuterated water permitted the measurement of MyoPS and protein signaling phosphorylation. MyoPS during STRT (1.43 ± 0.06%/day) and STRT+Leu (1.53 ± 0.06%/day) were greater than Rest (1.31 ± 0.05%/day), and MyoPS during STRT+Leu (1.53 ± 0.06%/day) was greater than STRT alone (1.43 ± 0.06%/day). STRT+Leu increased the ratio of phosphorylated to total mechanistic target of rapamycin and 4EBP1 compared to Rest. Engaging in STRT increased integrated MyoPS and protein signaling in young adults and was enhanced with increased protein intake derived from a leucine-enriched protein bar. This study was registered at clinicaltrials.gov as NCT03796897.


Assuntos
Treinamento Resistido , Masculino , Adulto Jovem , Humanos , Feminino , Leucina/farmacologia , Aminoácidos/metabolismo , Proteínas Musculares/metabolismo , Exercício Físico , Músculo Esquelético/metabolismo
3.
Nutrients ; 12(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664408

RESUMO

Skeletal muscle plays an indispensable role in metabolic health and physical function. A decrease in muscle mass and function with advancing age exacerbates the likelihood of mobility impairments, disease development, and early mortality. Therefore, the development of non-pharmacological interventions to counteract sarcopenia warrant significant attention. Currently, resistance training provides the most effective, low cost means by which to prevent sarcopenia progression and improve multiple aspects of overall health. Importantly, the impact of resistance training on skeletal muscle mass may be augmented by specific dietary components (i.e., protein), feeding strategies (i.e., timing, per-meal doses of specific macronutrients) and nutritional supplements (e.g., creatine, vitamin-D, omega-3 polyunsaturated fatty acids etc.). The purpose of this review is to provide an up-to-date, evidence-based account of nutritional strategies to enhance resistance training-induced adaptations in an attempt to combat age-related muscle mass loss. In addition, we provide insight on how to incorporate the aforementioned nutritional strategies that may support the growth or maintenance of skeletal muscle and subsequently extend the healthspan of older individuals.


Assuntos
Suplementos Nutricionais , Exercício Físico , Treinamento Resistido/métodos , Sarcopenia/prevenção & controle , Idoso , Envelhecimento , Creatina/administração & dosagem , Dieta/métodos , Proteínas Alimentares/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Humanos , Masculino , Força Muscular , Músculo Esquelético/metabolismo , Vitamina D/administração & dosagem , Vitaminas/administração & dosagem
4.
Nutrients ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349353

RESUMO

Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (P = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Proteínas de Plantas/administração & dosagem , Treinamento Resistido , Descanso/fisiologia , Solanum tuberosum/química , Adolescente , Adulto , Extremidades , Feminino , Humanos , Recomendações Nutricionais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA