Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 299: 134359, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35318020

RESUMO

Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.


Assuntos
Benzamidas , Extratos Vegetais , Células HEK293 , Células HeLa , Humanos , Estruturas Metalorgânicas , Ácidos Ftálicos
2.
Chemosphere ; 295: 133850, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35122823

RESUMO

In the present study, zinc chloride (ZnCl2) followed by acid treating was employed for the fabrication of activated biochar from pomegranate husk (APHBC) for 2,4-dichlorophenol (2,4-DCP) adsorption from an aqueous solution. The batch adsorption experiments were carried out as a function of solution pH, APHBC dose, initial 2,4-DCP concentration, contact time, and ionic strength. The APHBC showed a well-developed pore with specific surface areas of 1576 m2/g due to explosive characteristics of ZnCl2. In addition, the XRD analysis showed that the diffraction peaks between 15 and 35° corresponded to amorphous carbon. The pore size distribution results showed that APHBC was dominantly mesoporous materials. The pHpzc value of APHBC was 6.15 ± 0.15. According to batch experiments, the optimum adsorption conditions were pH of 3.0, contact time 60 min, APHBC dose of 1.75 g/L and without ionic strengths. The absorption capacity of 2,4-DCP at the initial concentration of 150.0 mg/L promptly decreased from 259.5 ± 12.9 to 74.5 ± 3.7 mg/g as the APHBC dose increased from 0.50 to 2.00 g/L. The isotherm and kinetics study of 2,4-DCP adsorption by APHBC revealed that Liu and Avrami fractional-order well fitted with experimental data, respectively.


Assuntos
Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Clorofenóis , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais , Punica granatum
3.
Chemosphere ; 287(Pt 4): 132453, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610372

RESUMO

Tetracycline (TC) is one of the antibiotics that is found in wastewaters. TC is toxic, carcinogenic, and teratogenic. In this study, the tetracycline was removed from water by adsorption using dioxide silicon nanoparticles (SiO2 NPs) biosynthesized from the extract of Nerium oleander leaves. These nanoparticles were characterized using SEM-EDX, BET-BJH, FTIR-ATR, TEM, and XRD. The influences of various factors such as pH solution, SiO2 NPs dose, adsorption process time, initial TC concentration, and ionic strength on adsorption behaviour of TC onto SiO2 NPs were investigated. TC adsorption on SiO2 NPs could be well described in the pseudo-second-order kinetic model and followed the Langmuir isotherm model with a maximum adsorption capacity was 552.48 mg/g. At optimal conditions, the experimental adsorption results indicated that the SiO2 NPs adsorbed 98.62% of TC. The removal of TC using SiO2 NPs was 99.56% at conditions (SiO2 NPs dose = 0.25 g/L, C0 = 25 mg/L, and t = 40 min) based on Box-Behnken design (BBD) combined with response surface methodology (RSM) modelling. Electrostatic interaction governs the adsorption mechanism is attributed. The reusability of SiO2 NPs was tested, and the performance adsorption was 85.36% after the five cycles. The synthesized SiO2 NPs as promising adsorbent has a potential application for antibiotics removal from wastewaters.


Assuntos
Nanopartículas , Nerium , Poluentes Químicos da Água , Adsorção , Antibacterianos , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais , Folhas de Planta/química , Dióxido de Silício , Tetraciclina , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 424(Pt A): 127294, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592595

RESUMO

Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792-30.0 MPa, varying the temperature (127-327 °C) and time (1-60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5 min) and high temperatures (above 277 °C), about 99% of HMWs were efficaciously converted to clean products by subcritical hydrothermal treatment. The results of hydrothermal extraction after 5 min indicated that at low temperatures (127-227 °C), the total organic carbon in the aqueous phase increased as the residual solid phase decreased, reaching a peak around 220 °C. Acetone soluble extracts or fat phase appeared above 227 °C and reached a maximum yield of 21% at 357 °C. Aspartic acid, threonine, and glycine were the primary amino acids; glycolic acid, formic acid, lactic acid, and acetic acid were obtained as the main organic acids, glucose, fructose, and cellobiose were substantial sugars produced from the aqueous phase after 5 min of hydrothermal subcritical hydrolysis extraction.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Purificação da Água , Medicina Herbária , Humanos , Hidrólise , Pandemias , SARS-CoV-2 , Temperatura
5.
Int J Biol Macromol ; 179: 366-376, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647339

RESUMO

A new alternative aerogel was prepared from low-cost chitin and psyllium biopolymers to adsorb crystal violet (CV) dye from liquid media and possibly treat effluents containing other dyes. The aerogel was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), which demonstrated that aerogel has a typical structure of amorphous materials and presented a randomly interconnected porous structure that resembles an open pore network. 2.5 g L-1 of aerogel was able to remove 86.00% of CV from solutions, and the natural pH of the CV solution was considered the more adequate for adsorption. The pseudo-second-order (PSO) model satisfactorily described the adsorption kinetics, and the Freundlich model was suitable to represent the adsorption equilibrium. The maximum experimental capacity achieved was 227.11 mg g-1, which indicates that aerogel is very efficient and competitive with several adsorbents. Tests using a simulated effluent showed that aerogel has excellent potential to treat real colored effluents.


Assuntos
Quitina/química , Corantes/química , Violeta Genciana/isolamento & purificação , Psyllium/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cinética , Porosidade , Termodinâmica , Água/química
6.
J Hazard Mater ; 271: 311-20, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24647264

RESUMO

A new activated carbon (AC) material was prepared by pyrolysis of a mixture of coffee grounds, eucalyptus sawdust, calcium hydroxide and soybean oil at 800°C. This material was used as adsorbent for the removal of the endocrine disruptor compounds 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solutions. The carbon material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), N2 adsorption/desorption curves and point of zero charge (pHPZC). Variables including the initial pH of the adsorbate solutions, adsorbent masses and contact time were optimized. The optimum range of initial pH for removal of endocrine disruptor compounds (EDC) was 2.0-11.0. The kinetics of adsorption were investigated using general order, pseudo first-order and pseudo-second order kinetic models. The Sips isotherm model gave the best fits of the equilibrium data (298K). The maximum amounts of E2 and EE2 removed at 298K were 7.584 (E2) and 7.883mgg(-1) (EE2) using the AC as adsorbent. The carbon adsorbent was employed in SPE (solid phase extraction) of E2 and EE2 from aqueous solutions.


Assuntos
Agricultura , Disruptores Endócrinos/química , Estradiol/química , Etinilestradiol/química , Resíduos Industriais , Poluentes Químicos da Água/química , Adsorção , Hidróxido de Cálcio , Carbono/química , Coffea , Eucalyptus , Temperatura Alta , Óleo de Soja , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA