Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JAMA Dermatol ; 159(1): 102-104, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449285

RESUMO

This nonrandomized clinical trial assesses treatment of patients diagnosed with Grover disease with blue light phytotherapy for several weeks.


Assuntos
Ictiose , Fototerapia , Humanos , Luz , Acantólise/terapia
2.
Oncotarget ; 7(5): 5877-91, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26716507

RESUMO

An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Doxorrubicina/farmacologia , Portadores de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Chá/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Acta Biomater ; 25: 268-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219859

RESUMO

Arabinoglactan protein (AGP)-rich nanoparticles obtained from the sticky exudates of Hedera helix (English ivy), have shown promising potential to be used in nanomedicine owing to their excellent aqueous solubility, low intrinsic viscosity, biocompatibility, and biodegradability. In this study, the feasibilities of utilizing ivy nanoparticles (INPs) as nano-carriers for delivering chemotherapeutic drugs in cancer therapy and as nano-fillers to develop novel scaffolds for tissue engineering in regenerative medicine are evaluated. Via electrostatic and hydrophobic interactions, pH-responsive nanoconjugates are formed between the INPs and the doxorubicin (DOX) with an entrapment ratio of 77.9±3.9%. While the INPs show minimal cytotoxicity, the formed INP-DOX conjugates exhibit substantially stronger cytotoxic activity than free DOX against multiple cancer cell lines, suggesting a synergistic effect is established upon conjugation. The anti-cancer effects of the INP-DOX conjugates are further evaluated via in vivo xenograft assays by subcutaneously implanting DOX resistant cell line, SW620/Ad-300, into nude mice. The tumor volumes in mice treated with the INP-DOX conjugates are significantly less than those of the mice treated with free DOX. In addition, the INPs are further exploited as nano-fillers to develop fibrous scaffolds with collagen, via mimicking the porous matrix where the INPs are embedded under natural condition. Enhanced adhesion of smooth muscle cells (SMCs) and accelerated proliferation of mouse aortic SMCs are observed in this newly constructed scaffold. Overall, the results obtained from the present study suggest great potential of the INPs to be used as biocompatible nanomaterials in nanomedicine. The AGP-rich INP renders a glycoprotein architecture that is amenable for modification according to the functional designs, capable of being developed as versatile nanomaterials for extensive biomedical applications. STATEMENT OF SIGNIFICANCE: Naturally occurring organic nanomaterials have drawn increasing interest for their potential biomedical applications in recent years. In this study, a new type of naturally occurring nanoparticles obtained from the sticky exudates on the adventitious roots of English ivy (H. helix), was explored for its potential biomedical application. In particular, the feasibilities of utilizing ivy nanoparticles (INPs) as nano-carriers for delivering chemotherapeutic drugs in cancer therapy and as nano-fillers to develop novel scaffolds for tissue engineering in regenerative medicine were evaluated both in vitro and in vivo. Overall, the results obtained from the present study suggest the great potential of the INPs to be used as biocompatible nanomaterials in nanomedicine. This study may open a totally new frontier for exploring the biomedical application of naturally occurring nanomaterials.


Assuntos
Materiais Biocompatíveis/farmacologia , Hedera/química , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/química , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Masculino , Camundongos , Camundongos Nus , Nanopartículas/ultraestrutura , Concentração Osmolar , Raízes de Plantas/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA