Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 22(1): 317, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457007

RESUMO

BACKGROUND: Drug-induced mitochondrial toxicity is thought to be a common mechanism of drug hepatotoxicity. Xian-Ling-Gu-Bao (XLGB) oral preparation is a commonly used drug for osteoporosis in China. Classical safety evaluation studies have shown that the entire preparation and six Chinese herbal medicines have high safety, but the incidence of drug-induced liver damage due to XLGB remains high, the mechanism and toxic substances causing liver injury are still unclear. The purpose of this study is to identify compounds with potential mitochondrial liabilities in XLGB, and to clarify their underlying mechanisms and related pathways. METHODS: The mitochondrial function analysis was performed using an extracellular flux assay, which simultaneously monitored both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Through network pharmacology and in vitro experimental verification, the potential protein targets, signaling pathways and molecular mechanism of mitochondrial toxicity have been studied. RESULTS: We observed a significant decrease in mitochondrial respiration of Psoraleae Fructus and its five compounds in fundamental bioenergetics parameters such as basal respiration, ATP-linked production and maximal respiration, indicating mitochondrial dysfunction. The network pharmacology results showed that the influence of XLGB on mitochondrial dysfunction was closely related to PI3K-Akt signaling pathway, mTOR signaling pathway and Apoptosis. Western blot showed that the levels of mTOR, p-mTOR (Ser2448), Raptor, PI3K (p110α), Beclin 1, ATG5 and Caspase-9 were up-regulated after treatment with psoralidin, psoralen and bavachin, and the expression of Bcl-2 was down-regulated after bavachinin treatment. CONCLUSIONS: The hepatotoxicity of XLGB is associated with mitochondrial dysfunction. Five compounds in Psoraleae Fructus showed mitochondrial damage, they are psoralidin, isobavachalcone, bavachinin, bavachin and psoralen, especially psoralidin showed significant reduction in reserve capacity and respiratory control ratios. The molecular mechanism is related to the activation of PI3K/mTOR signaling pathway to inhibit autophagy and induce mitochondrial apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Furocumarinas , Humanos , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Mitocôndrias , Transdução de Sinais
2.
Eur J Pharmacol ; 917: 174720, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953801

RESUMO

Autoimmune hepatitis (AIH) is a chronic progressive liver disease that currently does not have a successful therapeutic option. Vitexin, a bioflavonoid isolated from various medicinal plants, possesses a variety of activities; however, whether vitexin protects against AIH remains unclear. Therefore, the current study aims to investigate the hepatoprotective effects and mechanism of action of vitexin in both an experimental autoimmune hepatitis (EAH) mouse model and in D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatocyte injury. Syngeneic liver antigen S100 was used to establish EAH. Vitexin treatment significantly decreased the infiltration of inflammatory and CD4+ T cells in the liver, reduced ALT and AST levels in the serum and attenuated hepatic injury due to oxidative stress. Moreover, vitexin mitigated the upregulation of Bax and cleaved caspase-3 and the downregulation of Bcl-2 in the livers of AIH mice. These regulations were accompanied by not only increased phosphorylation of AMPK, AKT and GSK-3ß but also activation of Nrf2. Furthermore, vitexin inhibited apoptosis and the overexpression of inflammatory cytokines in D-GalN/LPS-treated AML12 cells. In addition, vitexin enhanced the phosphorylation of AMPK, AKT and GSK-3ß. When AML12 cells were treated with an inhibitor of AMPK/AKT or specific siRNA targeting Nrf2, vitexin did not further induce the activation of Nrf2/HO-1. A molecular docking study confirmed that vitexin could interact with AMPK through hydrogen bonding interactions. In conclusion, vitexin ameliorated hepatic injury in EAH mice through activation of the AMPK/AKT/GSK-3ß pathway and upregulation of the Nrf2 gene.


Assuntos
Fator 2 Relacionado a NF-E2
3.
Chemosphere ; 263: 128017, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841881

RESUMO

Phthalic acid esters (PAEs), as typical hormone pollutants, do harms to human health after enrichment over a long term exposure, causing the loss of oxygen-carrying function of red blood cells (RBCs). This study has investigated the mechanism for the toxicity of dimethyl phthalate (DMP) on the oxygen-carrying function of RBCs by measuring the iron release content of hemoglobin (Hb) in vivo and in vitro. The hematologic examination showed that the high dose of DMP at 1000 mg/kg significantly reduced the Hb content and increased the granulocyte content, whereas such toxicity was not relatively observed at a low (50 mg/kg) or a medium (250 mg/kg) dose of DMP. The in vitro experiments showed that DMP, incubated with RBCs, increased the iron release content as a function of DMP concentration. Interestingly, such a phenomenon was not observed when DMP was incubated with Hb alone, indicating that the release of hemoglobin iron could not directly caused by the combination of DMP and hemoglobin. The in vivo experiments indicated that DMP induced iron release and oxidative stress for rat RBCs. Moreover, vitamin C and E was found to reduce the level of iron release by recovering erythrocytes from the oxidative stress induced by DMP. This work has revealed that the oxidative stress induced by DMP, causing the release of Hb iron from RBCs, is the reason for the toxicity of DMP to the oxygen-carrying function.


Assuntos
Substâncias Perigosas/toxicidade , Ácidos Ftálicos/toxicidade , Animais , Poluentes Ambientais , Eritrócitos , Hemoglobinas , Humanos , Ferro , Estresse Oxidativo , Oxigênio , Ratos
4.
PLoS One ; 15(8): e0237583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804936

RESUMO

Identification and quantification of plant flavonoids are critical to pharmacokinetic study and pharmaceutical quality control due to their distinct pharmacological functions. Here we report on a novel plant flavonoid electrochemical sensor for sensitive and selective detection of dihydromyricetin (DMY) based on double- layered membranes consisting of gold nanoparticles (Au) anchored on reduced graphene oxide (rGO) and molecularly imprinted polymers (MIPs) modified glassy carbon electrode (GCE). Both rGO-Au and MIPs membranes were directly formed on GCE via in-situ electrochemical reduction and polymerization processes step by step. The compositions, morphologies, and electrochemical properties of membranes were investigated with X-ray powder diffractometry (XRD), Fourier transform infrared spectrum (FTIR), Field emission scanning electron microscopy (FESEM) combined with various electrochemical methods. The fabricated electrochemical sensor labeled as GCE│rGO-Au/MIPs exhibited excellent performance in determining of DMY under optimal experimental conditions. A wide linear detection range (LDR) ranges from 2.0×10-8 to 1.0×10-4 M together with a low limit of detection (LOD) of 1.2×10-8 M (S/N = 3) were achieved. Moreover, the electrochemical sensor was employed to determine DMY in real samples with satisfactory results.


Assuntos
Carbono/química , Técnicas Eletroquímicas/instrumentação , Flavonoides/análise , Flavonóis/análise , Grafite/química , Técnicas Biossensoriais/métodos , Eletrodos , Ouro , Limite de Detecção , Nanopartículas Metálicas , Impressão Molecular , Extratos Vegetais/análise , Polímeros/síntese química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Front Physiol ; 11: 369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457642

RESUMO

Impaired intestinal barrier function and oxidative stress injury play critical roles in the pathogenesis of alcoholic liver disease (ALD), and recent investigations have revealed a role for dietary copper in the liver and intestinal barrier function. Therefore, the current study investigates the mechanisms and role of dietary copper in alcohol induced liver diseases. C57BL/6 mice were used to create an alcoholic liver disease model with a Lieber-DeCarli diet containing 5% alcohol and were fed with different concentrations of dietary copper of adequate (6 ppm, CuA), marginal (1.5 ppm, CuM), or supplemental (20 ppm, CuS) amounts. Caco-2 cells were also exposed to ethanol and different concentrations of copper. Damages of the liver and intestine were evaluated by transaminases, histology staining, and protein and mRNA level, as well as cell proliferation, oxidative stress, and mitochondrial membrane potential. In animal experiments, the results indicate that an alcohol diet causes liver injury and disruption of intestinal barrier function as well as decreasing the expression of genes such as HIF-1α, occludin, SOD1, and GPX1. Supplemental dietary copper can revert these changes except for SOD1, but marginal dietary copper can worsen these changes. The in vitro cell experiments showed that proper copper supplementation can promote cell growth and reduce reactive oxygen species (ROS) production. In conclusion, supplemental dietary copper has beneficial effects on alcohol-induced intestine and liver injury, and marginal dietary copper shows detrimental effects on these parameters.

6.
Int J Nanomedicine ; 13: 831-842, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467573

RESUMO

AIM: The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery. METHODS: In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. RESULTS: The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. CONCLUSION: The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.


Assuntos
Furocumarinas/administração & dosagem , Lipossomos/administração & dosagem , Lipossomos/química , Administração Cutânea , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Elasticidade , Masculino , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/ultraestrutura , Absorção Cutânea/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química
7.
Psychopharmacology (Berl) ; 225(4): 839-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23052566

RESUMO

RATIONALE: An increasing number of herbal products has been introduced to treat anxiety and depression. Gelsemium elegans Benth (G. elegans) is a well-known herbal plant in Asia. Four major alkaloids (gelsemine, koumine, gelsevirine, and gelsenicine) have been isolated from G. elegans. Recently, interest has arisen to investigate the pharmaceutical potential of G. elegans alkaloids in the context of neuropsychopharmacology. OBJECTIVES: We investigated whether G. elegans alkaloids are capable of producing anxiolytic and antidepressant effects in mouse models. In particular, we examined whether the anxiolytic action of G. elegans alkaloids is due to the agonist effects of glycine receptor in the brain. METHODS: Two mouse models (elevated plus-maze and light-dark transition model) were used to examine potential anxiolytic effects. Forced swim test and tail suspension test were used to test the antidepressive action of G. elegans alkaloids. Moreover, we also explored the anxiolytic mechanisms of G. elegans alkaloids by intracerebroventricular administration of strychnine, an antagonist of glycine receptor, in the elevated plus-maze. RESULTS: Gelsemine, koumine, and gelsevirine, but not gelsenicine, exhibited potent anxiolytic effects in the two anxiety models. None of the four G. elegans alkaloids exerted antidepressant effects in the two depression models. None of G. elegans alkaloids impaired spontaneous motor activities. The intracerebroventricular administration of strychnine significantly antagonized the anxiolytic effects of gelsemine, koumine, and gelsevirine administrated subcutaneously. CONCLUSIONS: Gelsemine, koumine, and gelsevirine could be developed as the treatment of anxiety-related disorders in human patients. Their anxiolytic mechanism may be involved in the agonist action of glycine receptor in the brain.


Assuntos
Alcaloides/administração & dosagem , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Gelsemium , Extratos Vegetais/administração & dosagem , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Ansiolíticos/isolamento & purificação , Ansiedade/psicologia , Relação Dose-Resposta a Droga , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
8.
Planta Med ; 76(9): 889-92, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20112182

RESUMO

The 70 % EtOH extract of Polygonum cuspidatum showed inhibitory action against HIV-1-induced syncytium formation at non-cytotoxic concentrations in vitro with a 50 % effective concentration (EC(50)) of 13.94 +/- 3.41 microg/mL. Through bioactivity-guided fractionation, 20 phenolic compounds, including eight stilbenoids, were isolated from the roots of Polygonum cuspidatum, and their anti-HIV-1 activities were evaluated. Results showed that compounds 1, 13, 14, and 16 demonstrated fairly strong antiviral activity against HIV-1-induced cytopathic effects in C8166 lymphocytes at non-cytotoxic concentrations, with EC (50) values of 4.37 +/- 1.96 microg/mL, 19.97 +/- 5.09, 14.4 +/- 1.34 microg/mL, and 11.29 +/- 6.26 microg/mL and therapeutic index (TI) values of 8.12, > 10.02, > 13.89, and > 17.71, respectively. Other compounds showed either weak or no effects. Compound 6 also showed weak inhibition (153.42 +/- 19.25 microg/mL); however, it possesses very good water solubility and showed almost no cytotoxicity (> 2000 microg/mL), therefore achieving a fairly good TI (13.04). The activities of the two compounds (3 and 18) from Polygonum multiflorum were also assayed. The relationship between molecular structures and their bioactivities was also discussed.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Fallopia japonica/química , Infecções por HIV/tratamento farmacológico , HIV-1 , Fenóis/uso terapêutico , Extratos Vegetais/uso terapêutico , Polygonum/química , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Infecções por HIV/virologia , Humanos , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Estilbenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA