Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338360

RESUMO

Currently, the obvious side effects of anti-tumor drugs, premature drug release, and low tumor penetration of nanoparticles have largely reduced the therapeutic effects of chemotherapy. A drug delivery vehicle (MCN-SS-GQDs) was designed innovatively. For this, the mesoporous carbon nanoparticles (MCN) with the capabilities of superior photothermal conversion efficiency and high loading efficiency were used as the skeleton structure, and graphene quantum dots (GQDs) were gated on the mesopores via disulfide bonds. The doxorubicin (DOX) was used to evaluate the pH-, GSH-, and NIR-responsive release performances of DOX/MCN-SS-GQDs. The disulfide bonds of MCN-SS-GQDs can be ruptured under high glutathione concentration in the tumor microenvironment, inducing the responsive release of DOX and the detachment of GQDs. The local temperature of a tumor increases significantly through the photothermal conversion of double carbon materials (MCN and GQDs) under near-infrared light irradiation. Local hyperthermia can promote tumor cell apoptosis, accelerate the release of drugs, and increase the sensitivity of tumor cells to chemotherapy, thus increasing treatment effect. At the same time, the detached GQDs can take advantage of their extremely small size (5-10 nm) to penetrate deeply into tumor tissues, solving the problem of low permeability of traditional nanoparticles. By utilizing the photothermal properties of GQDs, synergistic photothermal conversion between GQDs and MCN was realized for the purpose of synergistic photothermal treatment of superficial and deep tumor tissues.


Assuntos
Antineoplásicos , Grafite , Hipertermia Induzida , Nanopartículas , Neoplasias , Pontos Quânticos , Humanos , Pontos Quânticos/química , Grafite/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina , Nanopartículas/química , Fototerapia , Carbono/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Dissulfetos , Microambiente Tumoral
2.
Colloids Surf B Biointerfaces ; 222: 113083, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36542948

RESUMO

Recently, the therapeutic effect of chemotherapy has been obviously impaired due to premature drug release, low tumor penetration, and multidrug resistance of nanoplatforms. In this paper, a novel multiple-sensitive drug delivery system (MC-ss-CDs) was developed by gating long-wavelength emitting carbon dots (CDs) on the openings of mesoporous carbon nanoparticles (MC) through disulfide bonds. The MC with excellent photothermal transition efficiency and high drug storage capacity for doxorubicin (DOX) was used as the delivery carrier. The CDs had multiple functions, including intelligent switching to hinder unwanted release, photothermal therapy (PTT) agents to improve the heat generation effect of MCs and bioimaging trackers to monitor drug delivery. The disulfide bonds, as the linkers between MC carriers and CDs, are stable under normal physical conditions and relatively labile under high GSH concentrations in the cytoplasm of tumor cells. After arriving at the tumor microenvironment, DOX/MC-ss-CDs can rapidly break into DOX/MC and CDs under high GSH concentrations. DOX/MC could realize efficient integration of PTT and chemotherapy on the surface of the tumor by stimuli-responsive DOX release and synergetic heating of MC and CDs. The small-sized CDs with excellent penetrating ability could effectively enter the deep tumor and realize NIR-triggered photothermal ablation. The DOX/MC-ss-CDs showed a chemophotothermal effect with a combination index of 0.38 in vitro and in vivo. Therefore, the DOX/MC-ss-CDs could be employed as a trackable nanovehicle for synergistic chemotherapy and PTT at different depths.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Fototerapia/métodos , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Carbono/química , Dissulfetos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA