Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 72: 105087, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33440186

RESUMO

UDP glucuronosyltransferases (UGTs) of the gastrointestinal tract play a crucial role in protection against the toxic effects of xenobiotics in the environment. UGTs such as UGT1A8 and UGT1A10 are predominantly expressed in gastrointestinal tissues. In this study, we examined the phase II metabolism of raloxifene in differentiated Caco-2 monolayers by inducing UGT1A8 and UGT1A10 expression in these cells. The present study evaluated the following four flavonoids of Scutellaria baicalensis as model herbal compounds: scutellarein, salvigenin, baicalein, and wogonin. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The transepithelial electrical resistance values for the individual compounds were comparable regardless of whether they were measured individually. Salvigenin significantly inhibited UGT1A8 and UGT1A10 activities in a concentration-dependent manner. All individual compounds except scutellarein inhibited UGT1A8 and UGT1A10 activity at a concentration of 100 µM. In addition, all individual flavonoids at 100 µM, except wogonin, significantly increased the amount of raloxifene in the basolateral chambers. The positive control, canagliflozin, significantly inhibited both UGT1A8 and UGT1A10 activities. These findings suggest that the Caco-2 assay can be utilized for identifying UGT1A8 and UGT1A10 inhibitors and indicate the potential of salvigenin for enhancing the pharmacological effects of UGT substrate drugs.


Assuntos
Flavonoides/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Cloridrato de Raloxifeno/farmacologia , Scutellaria baicalensis , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Células CACO-2 , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Intestinos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA