Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 9(17): e2001023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729260

RESUMO

The pulse is a key biomedical signal containing various human physiological and pathological information highly related to cardiovascular diseases. Pulse signals are often collected from the radial artery based on Traditional Chinese Medicine, or by using flexible pressure sensors. However, the wrist wrapped with a flexible pressure sensor exhibits unstable signals under hand motion because of the concave surface of the wrist. By contrast, fingertips have a convex surface and therefore show great promises in stable and long-term pulse monitoring. Despite the promising potential, the fingertip pulse signal is weak, calling for highly sensitive detecting devices. Here, a highly sensitive and flexible iontronic pressure sensor with a linear sensitivity of 13.5 kPa-1 , a swift response, and remarkable stability over 5000 loading/unloading cycles is developed. This sensor enables stable and high-resolution detection of pulse waveform under both static condition and finger motion. Fingertip pulse waveforms from subjects of different genders, age, and health conditions are collected and analyzed, suggesting that fingertip pulse information is highly similar to that of the radial artery. This work justifies that fingertip is an ideal platform for pulse signals monitoring, which would be a competitive alternative to existing complex health monitoring systems.


Assuntos
Dedos , Pulso Arterial , Feminino , Frequência Cardíaca , Humanos , Masculino , Monitorização Fisiológica , Movimento (Física)
2.
Sheng Wu Gong Cheng Xue Bao ; 33(5): 775-784, 2017 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-28876032

RESUMO

CRISPR/Cas9, emerged as an efficient and powerful gene editing technology, has become the mainstream genome editing technology. Constructing mutants using CRISPR/Cas9 system is of great significance to the functional study and breeding application of useful genes. As the basis of the technology, a method for identification of mutation with efficiency and lower cost is needed. In this report, we studied the factors influencing mutation detected by CEL Ⅰ crude extracts, such as the amount of protein, enzyme incubation time, PCR buffers. Under the optimized conditions, we can integrate the mutation detection steps into one-tube reaction. We used this system to examine the mutation types and frequency of rice stn1 mediated by CRISPR/Cas9. We also used this method to identify different mutation types including homozygous, heterozygous and bi-allelic mutations. The accuracy of this method reached 100% verified by sequencing. Altogether, our results showed that using CELⅠ crude extracts was an efficient and low cost method for identification of CRISPR/Cas9 mediated mutation.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Oryza/genética , Extratos Vegetais/genética , Melhoramento Vegetal
3.
Front Plant Sci ; 8: 749, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553299

RESUMO

Proximity-dependent biotin identification (BioID), which detects physiologically relevant proteins based on the proximity-dependent biotinylation process, has been successfully used in different organisms. In this report, we established the BioID system in rice protoplasts. Biotin ligase BirAG was obtained by removing a cryptic intron site in the BirA∗ gene when expressed in rice protoplasts. We found that protein biotinylation in rice protoplasts increased with increased expression levels of BirAG. The biotinylation effects can also be achieved by exogenous supplementation of high concentrations of biotin and long incubation time with protoplasts. By using this system, multiple proteins were identified that associated with and/or were proximate to OsFD2 in vivo. Our results suggest that BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment in plant cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA