Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 204: 117579, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455159

RESUMO

Stocking of filter-feeding fish is a common tool used in (sub)tropical Chinese reservoirs to control phytoplankton. However, field investigations have showed that such stocking would enhance instead of controlling phytoplankton in these reservoirs. Reservoirs generally receive a considerable amount of detritus from their catchments which may constitute an important carbon source to filter-feeding fish. Whether direct consumption of detritus increases the availability of dissolved inorganic phosphorus (P) to phytoplankton and thereby provides resilience against the control of phytoplankton biomass is debated. We conducted an enclosure experiment in a (sub)tropical Chinese reservoir (Liuxihe Reservoir) to assess how a gradient of filter-feeding fish (Silver Carp Hypophthalmichthys molitrix) biomass affected P dynamics and fish grazing and predation when subsidized by allochthonous detritus. Fish had strong effects on the dynamics and fluxes of P. TP concentration in the water column increased over time in all enclosures, but the presence of fish slowed its increase. Thus, TP decreased with increasing fish biomass. Fish were a net sink of P to the water column, because they gained mass during the experiment. Moreover, P sequestered by fish could largely account for the lower TP concentrations observed in enclosures with fish compared to fishless enclosures. Fish presence at high biomass strongly reduced the abundance of large zooplankton species and P excretion by zooplankton. However, the negative effect of fish predation on zooplankton was negligible when fish was present at low biomass. Increasing fish biomass increased the relative role of fish in P cycling but decreased the overall P excretion by fish and zooplankton. Compared to enclosures with high fish biomass, both zooplankton grazing effect on phytoplankton (zooplankton: phytoplankton biomass ratio as a proxy) and the overall P excretion were much higher, whereas fish grazing effect on phytoplankton (fish: phytoplankton biomass ratio as a proxy), chlorophyll a and the yield of chlorophyll a per TP were much lower in enclosures with low fish biomass. This suggested that phytoplankton limitation might shift from one of zooplankton control to one of limitation by P availability with increasing fish biomass. Relative to fish mediated P recycling and fish grazing, zooplankton grazing appeared to be more important as a driver of trophic cascades in systems subsidized by allochthonous detritus. Silver Carp stocked at high biomass would strongly reduce zooplankton grazing pressure and increase the yield of phytoplankton per TP.


Assuntos
Carpas , Fósforo , Animais , Biomassa , Clorofila A , Cadeia Alimentar , Fitoplâncton , Zooplâncton
2.
Water Res ; 180: 115841, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422412

RESUMO

Stocking of bigheaded carp (mainly Hypophthalmichthys nobilis and H. molitrix) is commonly used in (sub)tropical Chinese reservoirs to control phytoplankton, but with ambiguous results. Whether these carp act as a phosphorus (P) source or sink for phytoplankton is debated. We compared the trophic structures in twenty-three reservoirs with different nutrient concentrations in the flood season (after bigheaded carp introduction) with the dry season (after bigheaded carp harvesting). Fish biomass was positively related to TP, and the slope of the relationship showed no difference between seasons. Bigheaded carp harvesting exceeded the amount introduced, which may explain an observed lower intercept of the relationship and fish biomass to the TP ratio in the dry season. Fish predation pressure on zooplankton (fish: zooplankton biomass ratio as a proxy) was highest in the flood season and increased with TP in both seasons. Accordingly, zooplankton grazing effect on phytoplankton (zooplankton: phytoplankton biomass ratio as a proxy) decreased with fish biomass. Furthermore, both the zooplankton biomass and the zooplankton: phytoplankton biomass ratio were among the lowest reported in the literature for the nutrient range studied. Fish grazing effect on phytoplankton (fish: phytoplankton biomass ratio as a proxy) was also highest in the flood season and decreased with TP in both seasons. Nanoplankton was the dominant phytoplankton group in oligotrophic to mesotrophic reservoirs, while filamentous cyanobacteria dominated in eutrophic reservoirs. Chlorophyll a increased with TP and fish biomass, whereas the yield of chlorophyll a per TP (Chla: TP ratio) increased with fish biomass. Accordingly, both chlorophyll a and the Chla: TP ratio were highest in the flood season. We conclude that bigheaded carp act as P sink at the ecosystem level but as P source for phytoplankton, and enhance the yield of chlorophyll a per TP and thus eutrophication.


Assuntos
Carpas , Fitoplâncton , Animais , Biomassa , Clorofila A , Ecossistema , Eutrofização , Fósforo , Estações do Ano , Zooplâncton
3.
Water Res ; 154: 136-143, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782555

RESUMO

Phosphorus is a critical element determining trophic status and Chlorophyll a (Chl a) level in natural lakes and reservoirs, and total phosphorus (TP) concentrations can be predicted from data on phosphorus loading, hydraulic flushing rate and sedimentation. Due to their interactions with phosphorus, iron (hydr) oxides in suspended particles, originally derived from watershed soil, can strongly influence the phosphorus sedimentation and phosphorus bioavailability in water columns. Thus, the TP-precipitation relationship and the response of Chl a to TP are likely associated with watersheds soil iron. To test this assumption, we built hierarchical linear models for summer observation of natural lakes and reservoirs across a large geographic gradient. The intercepts and slopes of TP-precipitation relationships are higher in natural lakes than those in reservoirs, and these model coefficients exhibit latitudinal variations that are explained by the natural soil iron gradient. Soil iron, operating at a regional level, significantly mediates the effect of precipitation on TP concentration in both natural lakes and reservoirs, and drives the latitudinal variation in the Chl a-TP relationships for reservoirs. Our results imply that the increase in extreme precipitation events anticipated under future climate conditions may substantially mitigate eutrophication in tropical and subtropical reservoirs, but may worsen conditions in temperate lakes.


Assuntos
Lagos , Fósforo , Clorofila , Clorofila A , Monitoramento Ambiental , Eutrofização , Ferro , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA