Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 30(1): 13, 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36803854

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have linked RRBP1 (ribosomal-binding protein 1) genetic variants to atherosclerotic cardiovascular diseases and serum lipoprotein levels. However, how RRBP1 regulates blood pressure is unknown. METHODS: To identify genetic variants associated with blood pressure, we performed a genome-wide linkage analysis with regional fine mapping in the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) cohort. We further investigated the role of the RRBP1 gene using a transgenic mouse model and a human cell model. RESULTS: In the SAPPHIRe cohort, we discovered that genetic variants of the RRBP1 gene were associated with blood pressure variation, which was confirmed by other GWASs for blood pressure. Rrbp1- knockout (KO) mice had lower blood pressure and were more likely to die suddenly from severe hyperkalemia caused by phenotypically hyporeninemic hypoaldosteronism than wild-type controls. The survival of Rrbp1-KO mice significantly decreased under high potassium intake due to lethal hyperkalemia-induced arrhythmia and persistent hypoaldosteronism, which could be rescued by fludrocortisone. An immunohistochemical study revealed renin accumulation in the juxtaglomerular cells of Rrbp1-KO mice. In the RRBP1-knockdown Calu-6 cells, a human renin-producing cell line, transmission electron and confocal microscopy revealed that renin was primarily retained in the endoplasmic reticulum and was unable to efficiently target the Golgi apparatus for secretion. CONCLUSIONS: RRBP1 deficiency in mice caused hyporeninemic hypoaldosteronism, resulting in lower blood pressure, severe hyperkalemia, and sudden cardiac death. In juxtaglomerular cells, deficiency of RRBP1 reduced renin intracellular trafficking from ER to Golgi apparatus. RRBP1 is a brand-new regulator of blood pressure and potassium homeostasis discovered in this study.


Assuntos
Proteínas de Transporte , Hiperpotassemia , Hipertensão , Hipoaldosteronismo , Animais , Humanos , Camundongos , Aldosterona , Óxido de Alumínio , Pressão Sanguínea , Estudo de Associação Genômica Ampla , Homeostase , Hiperpotassemia/complicações , Hipoaldosteronismo/complicações , Potássio , Renina/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia
2.
J Agric Food Chem ; 66(30): 8124-8131, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29923397

RESUMO

Apigenin, a flavone abundant in parsley and celery, is known to act on several CNS receptors, but its very poor water solubility (<0.001 mg/mL) impedes its absorption in vivo and prevents clinical use. Herein, apigenin was directly conjugated with glycine, l-phenylalanine, and l-lysine to give the corresponding carbamate derivatives, all of which were much more soluble than apigenin itself (0.017, 0.018, and 0.13 mg/mL, respectively). The Lys-apigenin carbamate 10 had a temporary sedative effect on the mice within 5 min of intraperitoneal administration (single dose of 0.4 mg/g) and could be detected in the mice brain tissues at a concentration of 0.82 µg/g of intact Lys-apigenin carbamate 10 and 0.42 ug/g of apigenin at 1.5 h. This study accomplished the delivery of apigenin across the BBB in a manner that might be applicable to other congeners, which should inform the future development of BBB-crossing flavonoids.


Assuntos
Apigenina/metabolismo , Barreira Hematoencefálica/metabolismo , Lisina/metabolismo , Extratos Vegetais/metabolismo , Animais , Apigenina/administração & dosagem , Apigenina/química , Apium/química , Apium/metabolismo , Encéfalo/metabolismo , Humanos , Cinética , Lisina/administração & dosagem , Lisina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Petroselinum/química , Petroselinum/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
3.
Phytomedicine ; 42: 90-99, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655703

RESUMO

BACKGROUND: The extracts from wild bitter gourd fruit (WBGE) were reported to possess numerous pharmacological activities. However, the anti-inflammatory effects of WBGE on human lung epithelial cells and the underlying mechanisms have not been determined. PURPOSE: To evaluate the molecular basis of the effects of WBGE on intercellular adhesion molecule-1 (ICAM-1) expression in alveolar epithelial (A549) cells, C57BL/6 wild-type (WT) mice and microRNA (miR)-221/-222 knockout (KO) mice with or without tumor necrosis factor (TNF-α; 3 ng/ml) treatment. STUDY DESIGN/METHODS: WT mice and miR-221/-222 KO mice were fed a control diet and divided into four groups (C: control mice; T: treated with TNF-α alone; WBGE/T: pretreated with WBGE and then stimulated with TNF-α; WBGE: treated with WBGE alone). The effects of WBGE on ICAM-1 expression and the related signals in A549 cells and mice with or without TNF-α treatment were examined by Western blot and immunofluorescent staining. RESULTS: WBGE significantly decreased the TNF-α-induced ICAM-1 expression in A549 cells through the inhibition of phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ nuclear factor- kappa B (NF-κB)/ inhibitor of NF-κB (IκB) phosphorylation and decreased leukocyte adhesion. In addition, WBGE reduced endogenous ICAM-1 expression and upregulated miR-221/-222 expression. The overexpression of miR-222 decreased PI3K/AKT/NF-κB/IκB and ICAM-1 expression, which resulted in reducing monocyte adhesion. Moreover, WBGE reduced ICAM-1 expression in lung tissues of WT mice with or without TNF-α treatment and upregulated miR-221/222. WBGE did not affect the miR-221/-222 level and had little effect on ICAM-1 expression in miR-221/-222 KO mice. CONCLUSIONS: These results suggest that WBGE reduced ICAM-1 expression both under in vitro and in vivo conditions. The protective effects were mediated partly through the miR-221/-222/PI3K/AKT/NF-κB pathway.


Assuntos
Pulmão/citologia , MicroRNAs/genética , Momordica charantia/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Células Epiteliais/efeitos dos fármacos , Frutas/química , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
Neurobiol Dis ; 77: 35-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725421

RESUMO

Dravet syndrome (DS) is characterized by severe infant-onset myoclonic epilepsy along with delayed psychomotor development and heightened premature mortality. A primary monogenic cause is mutation of the SCN1A gene, which encodes the voltage-gated sodium channel subunit Nav1.1. The nature and timing of changes caused by SCN1A mutation in the hippocampal dentate gyrus (DG) network, a core area for gating major excitatory input to hippocampus and a classic epileptogenic zone, are not well known. In particularly, it is still not clear whether the developmental deficit of this epileptogenic neural network temporally matches with the progress of seizure development. Here, we investigated the emerging functional and structural deficits of the DG network in a novel mouse model (Scn1a(E1099X/+)) that mimics the genetic deficit of human DS. Scn1a(E1099X/+) (Het) mice, similarly to human DS patients, exhibited early spontaneous seizures and were more susceptible to hyperthermia-induced seizures starting at postnatal week (PW) 3, with seizures peaking at PW4. During the same period, the Het DG exhibited a greater reduction of Nav1.1-expressing GABAergic neurons compared to other hippocampal areas. Het DG GABAergic neurons showed altered action potential kinetics, reduced excitability, and generated fewer spontaneous inhibitory inputs into DG granule cells. The effect of reduced inhibitory input to DG granule cells was exacerbated by heightened spontaneous excitatory transmission and elevated excitatory release probability in these cells. In addition to electrophysiological deficit, we observed emerging morphological abnormalities of DG granule cells. Het granule cells exhibited progressively reduced dendritic arborization and excessive spines, which coincided with imbalanced network activity and the developmental onset of spontaneous seizures. Taken together, our results establish the existence of significant structural and functional developmental deficits of the DG network and the temporal correlation between emergence of these deficits and the onset of seizures in Het animals. Most importantly, our results uncover the developmental deficits of neural connectivity in Het mice. Such structural abnormalities likely further exacerbate network instability and compromise higher-order cognitive processing later in development, and thus highlight the multifaceted impacts of Scn1a deficiency on neural development.


Assuntos
Giro Denteado/patologia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Rede Nervosa/patologia , Convulsões/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Giro Denteado/crescimento & desenvolvimento , Modelos Animais de Doenças , Glutamato Descarboxilase/metabolismo , Hipertermia Induzida/efeitos adversos , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Neurônios/ultraestrutura , Convulsões/etiologia , Convulsões/genética , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA