Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817142

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Macrófagos , Tuberculose/tratamento farmacológico , Rifampina/farmacologia , Ferro
2.
Front Cell Infect Microbiol ; 12: 1074533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776549

RESUMO

Introduction: As a deadly disease induced by Mycobacterium tuberculosis (Mtb), tuberculosis remains one of the top killers among infectious diseases. The low intracellular Mtb killing efficiency of current antibiotics introduced the long duration anti-TB therapy in clinic with strong side effects and increased drug-resistant mutants. Therefore, the exploration of novel anti-TB agents with potent anti-TB efficiency becomes one of the most urgent issues for TB therapies. Methods: Here, we firstly introduced a novel method for the preparation of zinc oxide-selenium nanoparticles (ZnO-Se NPs) by the hybridization of zinc oxide and selenium to combine the anti-TB activities of zinc oxide nanoparticles and selenium nanoparticles. We characterized the ZnO-Se NPs by dynamic laser light scattering and transmission electron microscopy, and then tested the inhibition effects of ZnO-Se NPs on extracellular Mtb by colony-forming units (CFU) counting, bacterial ATP analysis, bacterial membrane potential analysis and scanning electron microscopy imaging. We also analyzed the effects of ZnO-Se NPs on the ROS production, mitochondrial membrane potential, apoptosis, autophagy, polarization and PI3K/Akt/mTOR signaling pathway of Mtb infected THP-1 macrophages. At last, we also tested the effects of ZnO-Se NPs on intracellular Mtb in THP-1 cells by colony-forming units (CFU) counting. Results: The obtained spherical core-shell ZnO-Se NPs with average diameters of 90 nm showed strong killing effects against extracellular Mtb, including BCG and the virulent H37Rv, by disrupting the ATP production, increasing the intracellular ROS level and destroying the membrane structures. More importantly, ZnO-Se NPs could also inhibit intracellular Mtb growth by promoting M1 polarization to increase the production of antiseptic nitric oxide and also promote apoptosis and autophagy of Mtb infected macrophages by increasing the intracellular ROS, disrupting mitochondria membrane potential and inhibiting PI3K/Akt/mTOR signaling pathway. Discussion: These ZnO-Se NPs with synergetic anti-TB efficiency by combining the Mtb killing effects and host cell immunological inhibition effects were expected to serve as novel anti-TB agents for the development of more effective anti-TB strategy.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Nanopartículas , Selênio , Óxido de Zinco , Trifosfato de Adenosina , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Selênio/farmacologia , Serina-Treonina Quinases TOR , Óxido de Zinco/farmacologia , Óxido de Zinco/química
3.
Curr Med Chem ; 29(1): 86-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34126883

RESUMO

Tuberculosis (TB), induced by Mycobacterium tuberculosis (MTB), is a fatal infectious disease that kills millions of lives worldwide. The emergence of drug-resistant and multidrug-resistant cases is regarded as one of the most challenging threats to TB control due to the low cure rate. Therefore, TB and drug-resistant TB epidemic urge us to explore more effective therapies. The increasing knowledge of nanotechnology has extended the use of some nanomedicines for disease treatment in clinics, which also provide novel possibilities for nano-based medicines for TB treatment. Zinc oxide nanoparticles (ZnO NPs) have gained increasing attention for anti-bacterial uses based on their strong ability to induce reactive oxidative species (ROS) and release bactericidal Zinc ions (Zn2+), which are expected to act as novel strategies for TB and drug-resistant TB treatment. Some plant extracts, always from active herbal medicines, have been widely reported to show attractive anti-bacterial activity for infectious treatment, including TB. Here, we summarize the synthesis of ZnO NPs using plant extracts (green synthesized ZnO NPs), and further discuss their potentials for anti-TB treatments. This is the first review article discussing the anti-TB activity of ZnO NPs produced using plant extracts, which might contribute to the further applications of green synthesized ZnO NPs for anti-TB and drugresistant TB treatment.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Nanopartículas , Óxido de Zinco , Antibacterianos , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
4.
Acta Biomater ; 136: 456-472, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562660

RESUMO

The synergistic manipulation of autophagy blocking with tumor targeting and penetration effects to enhance cancer cell killing during photothermal therapy (PTT) remains a substantial challenge. Herein, we fabricated a biomimetic nanoplatform by precisely coating homologous prostate cancer cell membranes (CMs) onto the surface of mesoporous polydopamine nanoparticles (mPDA NPs) encapsulating the autophagy inhibitor chloroquine (CQ) for synergistically manipulating PTT and autophagy for anticancer treatment. The resulting biomimetic mPDA@CMs NPs-CQ system could escape macrophage phagocytosis, overcome the vascular barrier, and home in the homologous prostate tumor xenograft with high tumor targeting and penetrating efficiency. The mPDA NPs core endowed the mPDA@CMs NPs-CQ with good photothermal capability to mediate PTT killing of prostate cancer cells, while NIR-triggered CQ release from the nanosystem further arrested PTT-induced protective autophagy of cancer cells, thus weakening the resistance of prostate cancer cells to PTT. This combined PTT killing and autophagy blocking anticancer strategy could induce significant autophagosome accumulation, ROS generation, mitochondrial damage, endoplasmic reticulum stress, and apoptotic signal transduction, which finally results in synergistic prostate tumor ablation in vivo. This prostate cancer biomimetic nanosystem with synergistically enhanced anticancer efficiency achieved by manipulating PTT killing and autophagy blocking is expected to serve as a more effective anticancer strategy against prostate cancer. STATEMENT OF SIGNIFICANCE: Autophagy is considered as one of the most efficient rescuer and reinforcement mechanisms of cancer cells against photothermal therapy (PTT)-induced cancer cell eradication. How to synergistically manipulate autophagy blocking with significant tumor targeting and penetration to enhance PTT-mediated cancer cell killing remains a substantial challenge. Herein, we fabricated a biomimetic nanoplatform by precisely coating homologous cancer cell membranes onto the surface of mesoporous polydopamine nanoparticles with encapsulation of the autophagy inhibitor chloroquine for synergistic antitumor treatment with high tumor targeting and penetrating efficiency both in vitro and in vivo. This biomimetic nanosystem with synergistically enhanced anticancer efficiency by manipulating PTT killing and autophagy blocking is expected to serve as a more effective anticancer strategy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Autofagia , Biomimética , Humanos , Indóis , Masculino , Fototerapia , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA