Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(21): e2310351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591658

RESUMO

Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.


Assuntos
Doenças Metabólicas , Obesidade , Animais , Obesidade/metabolismo , Obesidade/terapia , Camundongos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Doenças Metabólicas/tratamento farmacológico , Eixo Encéfalo-Intestino , Titânio/química , Capsaicina/farmacologia , Capsaicina/administração & dosagem , Administração Oral , Terapia por Estimulação Elétrica/métodos , Camundongos Endogâmicos C57BL , Masculino , Compostos de Bário
2.
Tzu Chi Med J ; 36(1): 1-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406577

RESUMO

Traditional Chinese medicine (TCM) has gained considerable attention over the past few years for its multicomponent, multitarget, and multi-pathway approach to treating different diseases. Studies have shown that TCMs as adjuvant therapy along with conventional treatment may benefit in safely treating various disorders. However, investigations on finding effective herbal combinations are ongoing. A novel TCM formula, "Jing Si Herbal Tea (JSHT)," has been reported recently for their health-promoting effects in improving overall body and mental health. JSHT is a combination of eight herbs recognized in Chinese herbal pharmacopoeia for their anti-viral, anti-aging, and anti-cancer properties as well as protective effects against cardiovascular, metabolic, neural, digestive, and genitourinary diseases. Thus, to better understand the beneficial effects of the ingredients of JSHT on health, this review intends to summarize the preclinical and clinical studies of the ingredients of JSHT on human health and diseases, and possible therapeutic effects with the related mode of actions and future prospects for their application in complementary therapies.

3.
Front Nutr ; 10: 1085248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139437

RESUMO

Diabetic retinopathy (DR) is a major cause of vision loss in diabetic patients. Hyperglycemia-induced oxidative stress and the accumulation of inflammatory factors result in blood-retinal barrier dysfunction and the pathogenesis of DR. Scoparia dulcis L. extract (SDE), a traditional Chinese medicine, has been recently recognized for its various pharmacological effects, including anti-diabetic, anti-hyperlipidemia, anti-inflammatory, and anti-oxidative activities. However, there is no relevant research on the protective effect of SDE in DR. In this study, we treated high glucose (50 mM) in human retinal epithelial cells (ARPE-19) with different concentrations of SDE and analyzed cell viability, apoptosis, and ROS production. Moreover, we analyzed the expression of Akt, Nrf2, catalase, and HO-1, which showed that SDE dose-dependently reduced ROS production and attenuated ARPE-19 cell apoptosis in a high-glucose environment. Briefly, we demonstrated that SDE exhibited an anti-oxidative and anti-inflammatory ability in protecting retinal cells from high-glucose (HG) treatment. Moreover, we also investigated the involvement of the Akt/Nrf2/HO-1 pathway in SDE-mediated protective effects. The results suggest SDE as a nutritional supplement that could benefit patients with DR.

4.
Biomed Pharmacother ; 163: 114752, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116351

RESUMO

Coronavirus disease 2019 (COVID-19) is a worldwide health threat that has long-term effects on the patients and there is currently no efficient cure prescribed for the treatment and the prolonging effects. Traditional Chinese medicines (TCMs) have been reported to exert therapeutic effect against COVID-19. In this study, the therapeutic effects of Jing Si herbal tea (JSHT) against COVID-19 infection and associated long-term effects were evaluated in different in vitro and in vivo models. The anti-inflammatory effects of JSHT were studied in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in Omicron pseudotyped virus-induced acute lung injury model. The effect of JSHT on cellular stress was determined in HK-2 proximal tubular cells and H9c2 cardiomyoblasts. The therapeutic benefits of JSHT on anhedonia and depression symptoms associated with long COVID were evaluated in mice models for unpredictable chronic mild stress (UCMS). JSHT inhibited the NF-ƙB activities, and significantly reduced LPS-induced expression of TNFα, COX-2, NLRP3 inflammasome, and HMGB1. JSHT was also found to significantly suppress the production of NO by reducing iNOS expression in LPS-stimulated RAW 264.7 cells. Further, the protective effects of JSHT on lung tissue were confirmed based on mitigation of lung injury, repression in TMRRSS2 and HMGB-1 expression and reduction of cytokine storm in the Omicron pseudotyped virus-induced acute lung injury model. JSHT treatment in UCMS models also relieved chronic stress and combated depression symptoms. The results therefore show that JSHT attenuates the cytokine storm by repressing NF-κB cascades and provides the protective functions against symptoms associated with long COVID-19 infection.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Camundongos , Humanos , Animais , Síndrome de COVID-19 Pós-Aguda , Lipopolissacarídeos/efeitos adversos , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lesão Pulmonar Aguda/metabolismo , NF-kappa B/metabolismo
5.
J Herb Med ; 36: 100610, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36341465

RESUMO

Introduction: Coronavirus disease-2019 (COVID-19) has affected more than 608 million people and has killed 6.5 million people in the world. A few studies showed traditional Chinese medicine can be beneficial for COVID-19 treatment. An herbal preparation Jin Si Herbal Tea (JS) was formulated with herbal extracts known for their potential to decrease spike protein and ACE2 interaction, 3CL, and TRPMSS2 protease activity, and thus aimed to evaluate the clinical course of JS co-treatment along with the usual treatment schedule given for severe COVID-19 patients. Methods: This retrospective cohort study included patients with severe COVID-19 admitted to Hualien Tzu Chi Hospital between June and July 2021. All the patients were co-treated with JS and the primary outcome was death. The secondary outcomes included laboratory exam, Ct value, clinical course, and hospital stays. There were 10 patients recruited in this study and divided into < 70 years and ≧ 70 years groups (n = 5 in each group). Results: Older patients (≧70 years) had a higher Charlson Comorbidity Index, VACO index, and lower hemoglobin levels than < 70 years patients. The trend of lymphocyte count, LDH, D-dimer, and Ct value of non-survivors was not consistent with previous studies. The death rate was 20% and the recovery rate to mild illness in 14 days was 40%. Conclusion: In conclusion, this is the first clinical study of JS co-treatment in severe COVID-19 patients. JS co-treatment might reduce death rate and recovery time. Further large-scale clinical trials would be expected.

6.
Front Pharmacol ; 13: 953438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425575

RESUMO

Multiple studies show increased severity of SARS-CoV2-infection in patients with comorbidities such as hypertension and diabetes. In this study, we have prepared two herbal-based formulations, a pleiotropic herbal drink (Jin Si Herbal Tea, JHT) and a nasal drop (Jin Si nasal drop, JND), to provide preventive care against SARS-CoV2 infection. The effect of JHT and JND was determined in SARS-CoV2-S-pseudotyped lentivirus-infected bronchial and colorectal cell lines and in SKH-1 mouse models. For preliminary studies, ACE2 receptor abundant bronchial (Calu-3) and colorectal cells (Caco-2) were used to determine the effect of JHT and JND on the host entry of various variants of SARS-CoV2-S-pseudotyped lentivirus. A series of experiments were performed to understand the infection rate in SKH-1 mice (6 weeks old, n = 9), find the effective dosage of JHT and JND, and determine the combination effect of JHT and JND on the entry and adhesion of various variant SARS-CoV2-S-pseudotyped lentiviruses, which included highly transmissible delta and gamma mutants. Furthermore, the effect of combined JHT and JND was determined on diabetes-induced SKH-1 mice against the comorbidity-associated intense viral entry and accumulation. In addition, the effect of combined JHT and JND administration on viral transmission from infected SKH-1 mice to uninfected cage mate mice was determined. The results showed that both JHT and JND were effective in alleviating the viral entry and accumulation in the thorax and the abdominal area. While JHT showed a dose-dependent decrease in the viral load, JND showed early inhibition of viral entry from day 1 of the infection. Combined administration of 48.66 mg of JHT and 20 µL of JND showed rapid reduction in the viral entry and reduced the viral load (97-99%) in the infected mice within 3 days of treatment. Moreover, 16.22 mg of JHT and 20 µL JND reduced the viral infection in STZ-induced diabetic SKH-1 mice. Interestingly, combined JHT and JND also inhibited viral transmission among cage mates. The results, therefore, showed that combined administration of JHT and JND is a novel and an efficient strategy to potentially prevent SARS-CoV2 infection.

7.
J Ethnopharmacol ; 299: 115658, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075273

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia argyi H. Lév. & Vaniot (Asteraceae), also called "Chinese mugwort", is frequently used as a herbal medicine in China, Japan, Korea, and eastern parts of Russia. It is known as "ai ye" in China and "Gaiyou" in Japan. In ancient China, the buds and leaves of A. argyi were commonly consumed before and after Tomb-sweeping Day. It is used to treat malaria, hepatitis, cancer, inflammatory diseases, asthma, irregular menstrual cycle, sinusitis, and pathologic conditions of the kidney and liver. Although A. argyi extract (AAE) has shown anti-tumor activity against various cancers, the therapeutic effect and molecular mechanism of AAE remains to be further studied in lung cancer. AIM OF THE STUDY: This study aimed to demonstrate the anti-tumor effect of AAE and its associated biological mechanisms in CL1-0 parent and gemcitabine-resistant (CL1-0-GR) lung cancer cells. EXPERIMENTAL PROCEDURE: Human lung cancer cells CL1-0 and CL1-0-GR cells were treated with AAE. Cell viability was assessed using the MTT, colony, and spheroid formation assays. Migration, invasion, and immunofluorescence staining were used to determine the extent of epithelial- mesenchymal transition (EMT). JC-1 and MitoSOX fluorescent assays were performed to investigate the effect of AAE on mitochondria. Apoptosis was detected using the TUNEL assay and flow cytometry with Annexin V staining. RESULT: We found that A. argyi significantly decreased cell viability and induced apoptosis, accompanied by mitochondrial membrane depolarization and increased ROS levels in both parent cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0-GR). AAE-induced apoptosis is regulated via the PI3K/AKT and MAPK signaling pathways. It also prevents CL1-0 and CL1-0-GR cancer cell invasion, migration, EMT, colony formation, and spheroid formation. In addition, AAE acts cooperative with commercial chemotherapy drugs to enhance tumor spheroid shrinkage. CONCLUSION: Our study provides the first evidence that A. argyi treatment suppresses both parent and gemcitabine-resistant lung cancer cells by inducing ROS, mitochondrial membrane depolarization, and apoptosis, and reducing EMT. Our finding provides insights into the anti-cancer activity of A. argyi and suggests that A. argyi may serve as a chemotherapy adjuvant that potentiates the efficacy of chemotherapeutic agents.


Assuntos
Apoptose , Artemisia , Neoplasias Pulmonares , Anexina A5/metabolismo , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Apoptose/efeitos dos fármacos , Artemisia/química , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Gencitabina
8.
Biomed Pharmacother ; 146: 112427, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062051

RESUMO

Common characteristics of aging include reduced somatic stem cell number, susceptibility to cardiac injuries, metabolic imbalances and increased risk for oncogenesis. In this study, Pleiotropic anti-aging effects of a decoction Jing Si herbal drink (JS) containing eight Traditional Chinese Medicine based herbs, with known effects against aging related disorders was evaluated. Adipose derived mesenchymal stem cells (ADMSCs) from 16 week old adult and 24 month old aging WKY rats were evaluated for the age-related changes in stem cell homeostasis. Effects of JS on self-renewal, klotho and Telomerase Reverse Transcriptase expression DNA damage response were determined by immunofluorescence staining. The effects were confirmed in senescence induced human ADMSCs and in addition, the potential of JS to maintain telomere length was evaluated by qPCR analysis in ADMSCs challenged for long term with doxorubicin. Further, the effects of JS on doxorubicin-induced hypertrophic effect and DNA damage in H9c2 cardiac cells; MPP+-induced damages in SH-SY5Y neuron cells were investigated. In addition, effects of JS in maintaining metabolic regulation, in terms of blood glucose regulation in type-II diabetes mice model, and their potential to suppress malignancy in different cancer cells were ascertained. The results show that JS maintains stem cell homeostasis and provides cytoprotection. In addition JS regulates blood glucose metabolism, enhances autophagic clearances in neurons and suppresses cancer growth and migration. The results show that JS acts on multiple targets and provides a cumulative protective effect against various age-associated disorders and therefore it is a candidate pleiotropic agent for healthy aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Medicina Regenerativa/métodos , Animais , Citoproteção/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Controle Glicêmico/métodos , Humanos , Camundongos , Ratos , Ratos Endogâmicos WKY , Homeostase do Telômero/efeitos dos fármacos
9.
Biomed Pharmacother ; 120: 109491, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586903

RESUMO

Strategies targeting endoglin are currently being investigated in clinical trials as an anti-angiogenic therapy. The redundancy between endoglin and vascular endothelial growth factor (VEGF) signaling in angiogenesis was verified. Increased endoglin signaling after an anti-VEGF treatment was observed in patients. Treatment with an endoglin-neutralizing antibody increased VEGF signaling in endothelial cells. Therefore, strategies targeting both the endoglin and VEGF pathways were applied to determine whether the anti-angiogenic effects were increased in vitro. Five possible hits for endoglin were identified from 2000 compounds in the Traditional Chinese Medicine Database using Discovery Studio 4.5 Epigallocatechin-3-gallate (EGCG) attenuates angiogenesis by downregulating VEGF; however, researchers have not determined whether its anti-angiogenic effects are mediated by endoglin/Smad1 signaling. A major contribution of this study is that EGCG significantly inhibited the upregulation of endoglin in semaxanib-treated human umbilical vein endothelial cell. Thus, a combination treatment with EGCG and a VEGF tyrosine kinase inhibitor would be appropriate to reverse drug resistance. EGCG alone significantly decreased endoglin/pSmad1 levels in HUVECs. In the angiogenesis assay, the migration, invasion, and tube formation of HUVECs were markedly suppressed by higher concentrations of EGCG. A combination treatment with EGCG and semaxanib further produced increased anti-angiogenic effects. The main contribution of the study indicated that EGCG significantly decreased the semaxanib-induced overexpression of endoglin. Therefore, a combination treatment including EGCG will probably solve the drug resistance to anti-VEGF treatments.


Assuntos
Inibidores da Angiogênese/farmacologia , Catequina/análogos & derivados , Endoglina/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Indóis/farmacologia , Invasividade Neoplásica/patologia , Neovascularização Patológica/metabolismo , Pirróis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Appl Physiol (1985) ; 114(3): 361-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221955

RESUMO

The terminals of vagal lung C fibers (VLCFs) express various types of pharmacological receptors that are important to the elicitation of airway reflexes and the development of airway hypersensitivity. We investigated the blockade of the reflex and afferent responses of VLCFs to intravenous injections of agonists using perivagal treatment with antagonists (PAT) targeting the transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors in anesthetized rats. Blockading these responses via perivagal capsaicin treatment (PCT), which blocks the neural conduction of C fibers, was also studied. We used capsaicin, α,ß-methylene-ATP, and phenylbiguanide as the agonists, and capsazepine, iso-pyridoxalphosphate-6-azophenyl-2',5'-disulfonate, and tropisetron as the antagonists of transient receptor potential vanilloid 1, P2X, and 5-HT(3) receptors, respectively. We found that each of the PATs abolished the VLCF-mediated reflex apnea evoked by the corresponding agonist, while having no effect on the response to other agonists. Perivagal vehicle treatment failed to produce any such blockade. These blockades had partially recovered at 3 h after removal of the PATs. In contrast, PCT abolished the reflex apneic response to all three agonists. Both PATs and PCT did not affect the myelinated afferent-mediated apneic response to lung inflation. Consistently, our electrophysiological studies revealed that each of the PATs prevented the VLCF responses to the corresponding agonist, but not to any other agonist. PCT inevitably prevented the VLCF responses to all three agonists. Thus these PATs selectively blocked the stimulatory action of corresponding agonists on the VLCF terminals via mechanisms that are distinct from those of PCT. PAT may become a novel intervention for studying the pharmacological modulation of VLCFs.


Assuntos
Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Reflexo/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Animais , Apneia/tratamento farmacológico , Apneia/metabolismo , Apneia/fisiopatologia , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Capsaicina/metabolismo , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Veia Femoral/efeitos dos fármacos , Veia Femoral/fisiologia , Injeções Intravenosas , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiologia , Masculino , Fibras Nervosas Amielínicas/metabolismo , Neurônios Aferentes/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Reflexo/fisiologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Canais de Cátion TRPV/metabolismo , Nervo Vago/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA