Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 108: 154494, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36279758

RESUMO

BACKGROUND: Mitochondrial dysfunction is an important pathological feature of chronic heart failure (CHF). Regulation of mitophagy can effectively maintain mitochondrial homeostasis and energy metabolism, thereby inhibiting the development of CHF. Nuanxinkang (NXK), a Chinese herbal compound preparation, has significant cardioprotective effects on CHF; however, its underlying mechanism on mitophagy has not been completely clarified. This research intended to investigate the mechanism of NXK in treating myocardial infarction (MI)-induced CHF. METHODS: The left anterior descending coronary artery (LAD) ligation surgery was performed to establish an MI-induced CHF model in male C57BL/6 mice. From 1 day after surgery, mice were given NXK (0.41, 0.82 or 1.65 g/kg/d), Perindopril (PDPL, 0.607 mg/kg/d), or an equivalent amount of sterile water by gavage for 28 continuous days. Then, mice were examined for cardiac function, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial structure and mitophagy levels of cardiomyocytes, etc. In addition, a hypoxic injury model was created using HL-1 cardiomyocytes from wild-type (WT) mice. HL-1 cells were pretreated with or without NXK-containing serum. Mitochondrial function and mitophagy levels were examined in HL-1 cells. RESULTS: In MI-induced CHF mice, cardiac dysfunction, severe cardiac remodeling, elevated levels of oxidative stress, reduced ATP levels, and inhibition of PINK1/Parkin-mediated mitophagy were observed. High-dose NXK treatment (1.65 g/kg/d) significantly improved myocardial energy metabolism, inhibited cardiac remodeling, improved cardiac function, and restored cardiac PINK1/Parkin-mediated mitophagy levels to some extent in MI mice. In vitro, elevated levels of mitochondrial reactive oxygen species (ROS) with impaired mitochondrial membrane potential (ΔΨm) were observed in hypoxic HL-1 cells. While NXK treatment significantly protected cardiomyocytes from hypoxia-induced mitochondrial dysfunction, which is consistent with the in vivo results. Further studies showed that NXK could increase PINK1/Parkin-mediated mitophagy levels in cardiomyocytes, which could be blocked by the mitophagy inhibitor Mdivi-1. CONCLUSION: In conclusion, NXK could prevent cardiac mitochondrial dysfunction and improve cardiac function against MI-induced CHF by promoting Pink1/Parkin-mediated mitophagy, which represents a very prospective strategy for the treatment of CHF.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Masculino , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Camundongos Endogâmicos C57BL , Mitofagia , Infarto do Miocárdio/tratamento farmacológico , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Remodelação Ventricular , Medicamentos de Ervas Chinesas/farmacologia
2.
Phytomedicine ; 101: 154093, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35447422

RESUMO

BACKGROUND: Heart failure (HF) is a leading cause of death worldwide. Nuanxinkang (NXK) is an effective Chinese herbal formula used in treating HF, but its underlying potential mechanisms have not been fully elucidated. PURPOSE: To explore the protective activities of NXK in ischemia/reperfusion (IR)-induced HF through modulating the ratio of proinflammatory (M1) and anti-inflammatory (M2) macrophage populations and leading to the alleviation of inflammation. MATERIALS AND METHODS: In vivo, mice were subjected to myocardial IR to generate HF mouse models. Mice in the NXK group were treated with NXK for 28 days. Cardiac function was detected by echocardiography. Major lesions on mouse hearts were determined by hematoxylin-eosin (HE) staining, Masson staining, and TUNEL staining. Inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and qPCR examination. Flow cytometric analyses and qPCR examination were utilized for monitoring the temporal dynamics of macrophage infiltration following IR. In vitro, two polarized models were established by stimulating RAW264.7 cells with 200 ng/ml lipopolysaccharide (LPS) or 20 ng/ml interleukin-4 (IL-4). The RAW264.7 cells with nuclear factor-κB (NF-κB) overexpression was generated by transient transfection of NF-κB plasmids, and NXK intervention was conducted on this cell model to further clarify the involvement of NF-κB signaling in the NXK-mediated HF process. RESULTS: In the present study, NXK was found to significantly contribute the cardiac function and ameliorate cardiac fibrosis and apoptosis after myocardial IR injury in vivo, which may be partially due to a decrease in inflammation. We therefore hypothesized that NXK reduced inflammatory damage by modulating subtypes of macrophages. And the results demonstrated that the percentage of proinflammatory macrophages infiltrated in the post-IR period was reduced with NXK treatment, and thereby blunting the wave of proinflammatory response and shifting the peak of the anti-inflammatory macrophage-mediated wound healing process towards an earlier time point. The further investigation showed that macrophage polarization was mediated by NXK through inhibiting the phosphorylation and the nuclear translocation of NF-κB. Besides, the phosphorylated IKKß and IκBα, upstream mediators of the NF-κB pathway, also decreased by NXK. Moreover, the overexpression of NF-κB partially reversed the NXK-induced favorable activities; and successfully compensated the suppressive effect on inflammation and the phosphorylation of NF-κB. CONCLUSION: In conclude, our results demonstrated that NXK induced the cardioprotective effects against IR injury through a regulatory axis of IKKß/IκBα/NF-κB-mediated macrophage polarization. The information gained from this study provide a possible natural strategy for anti-inflammatory treatment of HF.


Assuntos
Insuficiência Cardíaca , NF-kappa B , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Isquemia , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Reperfusão
3.
J Clin Lab Anal ; 36(5): e24430, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403296

RESUMO

The type 2 diabetes mellitus (T2DM) is an urgent global health problem. T2DM patients are in a state of high oxidative stress and inflammation. Vitamin D and glutathione (GSH) play crucial roles in antioxidation and anti-inflammation. However, T2DM patients have lower vitamin D and GSH levels than healthy persons. A randomized controlled trial was conducted to see the effect of the vitamin D supplementation on oxidative stress and inflammatory factors in T2DM patients. In this study, a total of 178 T2DM patients were randomly enrolled, 92 patients received regular treatment (T2DM group) and 86 patients in Vitamin D group received extra vitamin D 400 IU per day in addition to regular treatment. Serum vitamin D, GSH, GSH metabolic enzyme GCLC and GR, inflammatory factor MCP-1, and IL-8 levels were investigated. We found that the T2DM group has significantly higher concentrations of MCP-1 and IL-8 than those in the healthy donor group. After vitamin D supplementation for 90 days, T2DM patients had a 2-fold increase of GSH levels, from 2.72 ± 0.84 to 5.76 ± 3.19 µmol/ml, the concentration of MCP-1 decreased from 51.11 ± 20.86 to 25.42 ± 13.06 pg/ml, and IL-8 also decreased from 38.21 ± 21.76 to 16.05 ± 8.99 pg/ml. In conclusion, our study demonstrated that vitamin D could regulate the production of GSH, thereby reducing the serum levels of MCP-1 and IL-8, alleviating oxidative stress and inflammation, providing evidence of the necessity and feasibility of adjuvant vitamin D treatment among patients with T2DM. On the other hand, vitamin D and GSH levels have important diagnostic and prognostic values in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Vitamina D , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Glutationa , Humanos , Inflamação , Interleucina-8/metabolismo , Estresse Oxidativo , Vitaminas
4.
J Neuroinflammation ; 17(1): 99, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241292

RESUMO

BACKGROUND: Bladder-related pain symptoms in patients with bladder pain syndrome/interstitial cystitis (BPS/IC) are often accompanied by depression and memory deficits. Magnesium deficiency contributes to neuroinflammation and is associated with pain, depression, and memory deficits. Neuroinflammation is involved in the mechanical allodynia of cyclophosphamide (CYP)-induced cystitis. Magnesium-L-Threonate (L-TAMS) supplementation can attenuate neuroinflammation. This study aimed to determine whether and how L-TAMS influences mechanical allodynia and accompanying depressive symptoms and memory deficits in CYP-induced cystitis. METHODS: Injection of CYP (50 mg/kg, intraperitoneally, every 3 days for 3 doses) was used to establish a rat model of BPS/IC. L-TAMS was administered in drinking water (604 mg·kg-1·day-1). Mechanical allodynia in the lower abdomen was assessed with von Frey filaments using the up-down method. Forced swim test (FST) and sucrose preference test (SPT) were used to measure depressive-like behaviors. Novel object recognition test (NORT) was used to detect short-term memory function. Concentrations of Mg2+ in serum and cerebrospinal fluid (CSF) were measured by calmagite chronometry. Western blot and immunofluorescence staining measured the expression of tumor necrosis factor-α/nuclear factor-κB (TNF-α/NF-κB), interleukin-1ß (IL-1ß), and N-methyl-D-aspartate receptor type 2B subunit (NR2B) of the N-methyl-D-aspartate receptor in the L6-S1 spinal dorsal horn (SDH) and hippocampus. RESULTS: Free Mg2+ was reduced in the serum and CSF of the CYP-induced cystitis rats on days 8, 12, and 20 after the first CYP injection. Magnesium deficiency in the serum and CSF correlated with the mechanical withdrawal threshold, depressive-like behaviors, and short-term memory deficits (STMD). Oral application of L-TAMS prevented magnesium deficiency and attenuated mechanical allodynia (n = 14) and normalized depressive-like behaviors (n = 10) and STMD (n = 10). The upregulation of TNF-α/NF-κB signaling and IL-1ß in the L6-S1 SDH or hippocampus was reversed by L-TAMS. The change in NR2B expression in the SDH and hippocampus in the cystitis model was normalized by L-TAMS. CONCLUSIONS: Normalization of magnesium deficiency by L-TAMS attenuated mechanical allodynia, depressive-like behaviors, and STMD in the CYP-induced cystitis model via inhibition of TNF-α/NF-κВ signaling and normalization of NR2B expression. Our study provides evidence that L-TAMS may have therapeutic value for treating pain and comorbid depression or memory deficits in BPS/IC patients.


Assuntos
Butiratos/uso terapêutico , Cistite/complicações , Hiperalgesia/tratamento farmacológico , Deficiência de Magnésio/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Butiratos/farmacologia , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/metabolismo , Cistite/fisiopatologia , Modelos Animais de Doenças , Feminino , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Deficiência de Magnésio/complicações , Deficiência de Magnésio/metabolismo , Deficiência de Magnésio/fisiopatologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA