Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38354898

RESUMO

Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.


Assuntos
Memória de Curto Prazo , Neurorretroalimentação , Humanos , Memória de Curto Prazo/fisiologia , Neurorretroalimentação/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Imageamento por Ressonância Magnética/métodos , Cognição
2.
Neuropsychologia ; 190: 108699, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37816480

RESUMO

Police officers of the Special Forces are confronted with highly demanding situations in terms of stress, high tension and threats to their lives. Their tasks are specifically high-risk operations, such as arrests of armed suspects and anti-terror interventions. Improving the emotion regulation skills of police officers might be a vital investment, supporting them to stay calm and focused. A promising approach is training emotion regulation by using real-time (rt-) fMRI neurofeedback. Specifically, downregulating activity in key areas of the fronto-limbic emotion regulation network in the presence of threatening stimuli. Thirteen recruits of the Dutch police special forces underwent six weekly rt-fMRI sessions, receiving neurofeedback from individualized regions of their emotion regulation network. Their task was to reduce the image size of threatening images, wherein the image size represented their brain activity. A reduction in image size represented successful downregulation. Participants were free to use their preferred regulation strategy. A control group of fifteen recruits received no neurofeedback. Both groups completed behavioural tests (image rating on evoked valence and arousal, questionnaire) before and after the neurofeedback training. We hypothesized that the neurofeedback group would improve in downregulation and would score better than the control group on the behavioural tests after the neurofeedback training. Neurofeedback training resulted in a significant decrease in image size (t(12) = 2.82, p = .015) and a trend towards decreased activation in the target regions (t(10) = 1.82, p = .099) from the first to the last session. Notably, subjects achieved downregulation below the pre-stimulus baseline in the last two sessions. No relevant differences between groups were found in the behavioural tasks. Through the training of rt-fMRI neurofeedback, participants learned to downregulate the activity in individualized areas of the emotion regulation network, by using their own preferred strategies. The lack of behavioural between-group differences may be explained by floor effects. Tasks that are close to real-life situations may be needed to uncover behavioural correlates of this emotion regulation training.


Assuntos
Regulação Emocional , Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Polícia , Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
3.
Neuroimage Clin ; 32: 102859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34689055

RESUMO

BACKGROUND: Amygdala activity dysregulation plays a central role in post-traumatic stress disorder (PTSD). Hence learning to self-regulate one's amygdala activity may facilitate recovery. PTSD is further characterized by abnormal contextual processing related to the traumatic memory. Therefore, provoking the personal traumatic narrative while training amygdala down-regulation could enhance clinical efficacy. We report the results of a randomized controlled trial (NCT02544971) of a novel self-neuromodulation procedure (i.e. NeuroFeedback) for PTSD, aimed at down-regulating limbic activity while receiving feedback from an auditory script of a personal traumatic narrative. To scale-up applicability, neural activity was probed by an fMRI-informed EEG model of amygdala activity, termed Amygdala Electrical Finger-Print (AmygEFP). METHODS: Fifty-nine adults meeting DSM-5 criteria for PTSD were randomized between three groups: Trauma-script feedback interface (Trauma-NF) or Neutral feedback interface (Neutral-NF), and a control group of No-NF (to control for spontaneous recovery). Before and immediately after 15 NF training sessions patients were blindly assessed for PTSD symptoms and underwent one session of amygdala fMRI-NF for transferability testing. Follow-up clinical assessment was performed at 3- and 6-months following NF treatment. RESULTS: Patients in both NF groups learned to volitionally down-regulate AmygEFP signal and demonstrated a greater reduction in PTSD symptoms and improved down-regulation of the amygdala during fMRI-NF, compared to the No-NF group. The Trauma-NF group presented the largest immediate clinical improvement. CONCLUSIONS: This proof-of-concept study indicates the feasibility of the AmygEFP-NF process-driven as a scalable intervention for PTSD and illustrates its clinical potential. Further investigation is warranted to elucidate the contribution of AmygEFP-NF beyond exposure and placebo effects.


Assuntos
Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Adulto , Tonsila do Cerebelo , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia
4.
Autism ; 25(6): 1746-1760, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33765841

RESUMO

LAY ABSTRACT: Neurofeedback is an emerging therapeutic approach in neuropsychiatric disorders. Its potential application in autism spectrum disorder remains to be tested. Here, we demonstrate the feasibility of real-time functional magnetic resonance imaging volitional neurofeedback in targeting social brain regions in autism spectrum disorder. In this clinical trial, autism spectrum disorder patients were enrolled in a program with five training sessions of neurofeedback. Participants were able to control their own brain activity in this social brain region, with positive clinical and neural effects. Larger, controlled, and blinded clinical studies will be required to confirm the benefits.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neurorretroalimentação , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/terapia , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/terapia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
5.
Eur Addict Res ; 27(5): 381-394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33677449

RESUMO

INTRODUCTION: Alcohol dependence is one of the most common substance use disorders, and novel treatment options are urgently needed. Neurofeedback training (NFT) based on real-time functional magnetic resonance imaging (rtf-MRI) has emerged as an attractive candidate for add-on treatments in psychiatry, but its use in alcohol dependence has not been formally investigated in a clinical trial. We investigated the use of rtfMRI-based NFT to prevent relapse in alcohol dependence. METHODS: Fifty-two alcohol-dependent patients from the UK who had completed a detoxification program were randomly assigned to a treatment group (receiving rtfMRI NFT in addition to standard care) or the control group (receiving standard care only). At baseline, alcohol consumption was assessed as the primary outcome measure and a variety of psychological, behavioral, and neural parameters as secondary outcome measures to determine feasibility and secondary training effects. Participants in the treatment group underwent 6 NFT sessions over 4 months and were trained to downregulate their brain activation in the salience network in the presence of alcohol stimuli and to upregulate frontal activation in response to pictures related to positive goals. Four, 8, and 12 months after baseline assessment, both groups were followed up with a battery of clinical and psychometric tests. RESULTS: Primary outcome measures showed very low relapse rates for both groups. Analysis of neural secondary outcome measures indicated that the majority of patients modulated the salience system in the desired directions, by decreasing activity in response to alcohol stimuli and increasing activation in response to positive goals. The intervention had a good safety and acceptability profile. CONCLUSION: We demonstrated that rtfMRI-neurofeedback targeting hyperactivity of the salience network in response to alcohol cues is feasible in currently abstinent patients with alcohol dependence.


Assuntos
Alcoolismo , Neurorretroalimentação , Alcoolismo/diagnóstico por imagem , Alcoolismo/terapia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
6.
Neurosci Biobehav Rev ; 125: 33-56, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33587957

RESUMO

Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N = 480 patients in experimental and N = 194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.


Assuntos
Transtorno Depressivo Maior , Neurorretroalimentação , Transtorno Depressivo Maior/terapia , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Resultado do Tratamento
7.
FASEB J ; 34(9): 12991-13004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777143

RESUMO

Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.


Assuntos
Cálcio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Músculo Liso/embriologia , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Feto , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Miócitos de Músculo Liso/citologia , Sistema Respiratório/embriologia
8.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176800

RESUMO

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Assuntos
Lista de Checagem/métodos , Neurorretroalimentação/métodos , Adulto , Consenso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Revisão da Pesquisa por Pares , Projetos de Pesquisa/normas , Participação dos Interessados
9.
Neuroimage Clin ; 28: 102496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33395987

RESUMO

Real-time fMRI-based neurofeedback is a relatively young field with a potential to impact the currently available treatments of various disorders. In order to evaluate the evidence of clinical benefits and investigate how consistently studies report their methods and results, an exhaustive search of fMRI neurofeedback studies in clinical populations was performed. Reporting was evaluated using a limited number of Consensus on the reporting and experimental design of clinical and cognitive-behavioral neurofeedback studies (CRED-NF checklist) items, which was, together with a statistical power and sensitivity calculation, used to also evaluate the existing evidence of the neurofeedback benefits on clinical measures. The 62 found studies investigated regulation abilities and/or clinical benefits in a wide range of disorders, but with small sample sizes and were therefore unable to detect small effects. Most points from the CRED-NF checklist were adequately reported by the majority of the studies, but some improvements are suggested for the reporting of group comparisons and relations between regulation success and clinical benefits. To establish fMRI neurofeedback as a clinical tool, more emphasis should be placed in the future on using larger sample sizes determined through a priori power calculations and standardization of procedures and reporting.


Assuntos
Neurorretroalimentação , Humanos , Imageamento por Ressonância Magnética , Projetos de Pesquisa
10.
Front Psychiatry ; 10: 779, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736799

RESUMO

Mental imagery is a promising tool and mechanism of psychological interventions, particularly for mood and anxiety disorders. In parallel developments, neuromodulation techniques have shown promise as add-on therapies in psychiatry, particularly non-invasive brain stimulation for depression. However, these techniques have not yet been combined in a systematic manner. One novel technology that may be able to achieve this is neurofeedback, which entails the self-regulation of activation in specific brain areas or networks (or the self-modulation of distributed activation patterns) by the patients themselves, through real-time feedback of brain activation (for example, from functional magnetic resonance imaging). One of the key mechanisms by which patients learn such self-regulation is mental imagery. Here, we will first review the main mental imagery approaches in psychotherapy and the implicated brain networks. We will then discuss how these networks can be targeted with neuromodulation (neurofeedback or non-invasive or invasive brain stimulation). We will review the clinical evidence for neurofeedback and discuss possible ways of enhancing it through systematic combination with psychological interventions, with a focus on depression, anxiety disorders, and addiction. The overarching aim of this perspective paper will be to open a debate on new ways of developing neuropsychotherapies.

11.
Neuroimage ; 202: 116107, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31437551

RESUMO

Neurofeedback (NF) is a research and clinical technique, characterized by live demonstration of brain activation to the subject. The technique has become increasingly popular as a tool for the training of brain self-regulation, fueled by the superiority in spatial resolution and fidelity brought along with real-time analysis of fMRI (functional magnetic resonance imaging) data, compared to the more traditional EEG (electroencephalography) approach. NF learning is a complex phenomenon and a controversial discussion on its feasibility and mechanisms has arisen in the literature. Critical aspects of the design of fMRI-NF studies include the localization of neural targets, cognitive and operant aspects of the training procedure, personalization of training, and the definition of training success, both through neural effects and (for studies with therapeutic aims) through clinical effects. In this paper, we argue that a developmental perspective should inform neural target selection particularly for pediatric populations, and different success metrics may allow in-depth analysis of NF learning. The relevance of the functional neuroanatomy of NF learning for brain target selection is discussed. Furthermore, we address controversial topics such as the role of strategy instructions, sometimes given to subjects in order to facilitate learning, and the timing of feedback. Discussion of these topics opens sight on problems that require further conceptual and empirical work, in order to improve the impact that fMRI-NF could have on basic and applied research in future.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Humanos , Neurorretroalimentação/fisiologia
12.
Nat Hum Behav ; 3(5): 436-445, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988481

RESUMO

Functional MRI neurofeedback (NF) allows humans to self-modulate neural patterns in specific brain areas. This technique is regarded as a promising tool to translate neuroscientific knowledge into brain-guided psychiatric interventions. However, its clinical implementation is restricted by unstandardized methodological practices, by clinical definitions that are poorly grounded in neurobiology, and by lack of a unifying framework that dictates experimental choices. Here we put forward a new framework, termed 'process-based NF', which endorses a process-oriented characterization of mental dysfunctions to form precise and effective psychiatric treatments. This framework relies on targeting specific dysfunctional mental processes by modifying their underlying neural mechanisms and on applying process-specific contextual feedback interfaces. Finally, process-based NF offers designs and a control condition that address the methodological shortcomings of current approaches, thus paving the way for a precise and personalized neuromodulation.


Assuntos
Encéfalo/fisiopatologia , Neuroimagem Funcional , Transtornos Mentais/fisiopatologia , Transtornos Mentais/terapia , Rede Nervosa/fisiopatologia , Neurorretroalimentação/métodos , Encéfalo/diagnóstico por imagem , Humanos , Transtornos Mentais/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem
13.
Brain Behav ; 9(3): e01240, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30790474

RESUMO

INTRODUCTION: Over the last decades, neurofeedback has been applied in variety of research contexts and therapeutic interventions. Despite this extensive use, its neural mechanisms are still under debate. Several scientific advances have suggested that different networks become jointly active during neurofeedback, including regions generally involved in self-regulation, regions related to the specific mental task driving the neurofeedback and regions generally involved in feedback learning (Sitaram et al., 2017, Nature Reviews Neuroscience, 18, 86). METHODS: To investigate the neural mechanisms specific to neurofeedback but independent from general effects of self-regulation, we compared brain activation as measured with functional magnetic resonance imaging (fMRI) across different mental tasks involving gradual self-regulation with and without providing neurofeedback. Ten participants freely chose one self-regulation task and underwent two training sessions during fMRI scanning, one with and one without receiving neurofeedback. During neurofeedback sessions, feedback signals were provided in real-time based on activity in task-related, individually defined target regions. In both sessions, participants aimed at reaching and holding low, medium, or high brain-activation levels in the target region. RESULTS: During gradual self-regulation with neurofeedback, a network of cortical control regions as well as regions implicated in reward and feedback processing were activated. Self-regulation with feedback was accompanied by stronger activation within the striatum across different mental tasks. Additional time-resolved single-trial analysis revealed that neurofeedback performance was positively correlated with a delayed brain response in the striatum that reflected the accuracy of self-regulation. CONCLUSION: Overall, these findings support that neurofeedback contributes to self-regulation through task-general regions involved in feedback and reward processing.


Assuntos
Neostriado , Neurorretroalimentação/métodos , Adulto , Mapeamento Encefálico/métodos , Cognição/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Neostriado/diagnóstico por imagem , Neostriado/fisiologia , Psicofisiologia/métodos , Recompensa
14.
Neuroimage ; 184: 36-44, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205210

RESUMO

There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.


Assuntos
Imaginação , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Neurorretroalimentação , Adulto , Mapeamento Encefálico , Feminino , Humanos , Cinestesia , Masculino , Autocontrole , Adulto Jovem
15.
Neuroimage ; 186: 256-265, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423429

RESUMO

fMRI Neurofeedback research employs many different control conditions. Currently, there is no consensus as to which control condition is best, and the answer depends on what aspects of the neurofeedback-training design one is trying to control for. These aspects can range from determining whether participants can learn to control brain activity via neurofeedback to determining whether there are clinically significant effects of the neurofeedback intervention. Lack of consensus over criteria for control conditions has hampered the design and interpretation of studies employing neurofeedback protocols. This paper presents an overview of the most commonly employed control conditions currently used in neurofeedback studies and discusses their advantages and disadvantages. Control conditions covered include no control, treatment-as-usual, bidirectional-regulation control, feedback of an alternative brain signal, sham feedback, and mental-rehearsal control. We conclude that the selection of the control condition(s) should be determined by the specific research goal of the study and best procedures that effectively control for relevant confounding factors.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Grupos Controle , Imageamento por Ressonância Magnética , Neurorretroalimentação/métodos , Humanos , Imaginação , Efeito Placebo
16.
Neuropsychopharmacology ; 43(13): 2578-2585, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29967368

RESUMO

Functional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS). Forty-three moderately to severely depressed medicated patients were randomly assigned to five sessions augmentation treatment of either NFE or NFS training. At primary outcome (week 12) no significant group mean HDRS difference was found (B = -0.415 [95% CI -4.847 to 4.016], p = 0.848) for the 32 completers (16 per group). However, across groups depressive symptoms decreased by 43%, and 38% of patients remitted. These improvements lasted until follow-up (week 18). Both groups upregulated target regions to a similar extent. Further, clinical improvement was correlated with an increase in self-efficacy scores. However, the interpretation of clinical improvements remains limited due to lack of a sham-control group. We thus surveyed effects reported for accepted augmentation therapies in depression. Data indicated that our findings exceed expected regression to the mean and placebo effects that have been reported for drug trials and other sham-controlled high-technology interventions. Taken together, we suggest that the experience of successful self-regulation during fMRI-NF training may be therapeutic. We conclude that if fMRI-NF is effective for depression, self-regulation training of higher visual areas may provide an effective alternative.


Assuntos
Encéfalo/diagnóstico por imagem , Sistemas Computacionais , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/terapia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Adulto , Transtorno Depressivo/psicologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Autoeficácia , Resultado do Tratamento
17.
Eur Psychiatry ; 50: 28-33, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395621

RESUMO

BACKGROUND: A core principle of creating a scientific evidence base is that results can be replicated in independent experiments and in health intervention research. The TIDieR (Template for Intervention Description and Replication) checklist has been developed to aid in summarising key items needed when reporting clinical trials and other well designed evaluations of complex interventions in order that findings can be replicated or built on reliably. Neurofeedback (NF) using functional MRI (fMRI) is a multicomponent intervention that should be considered a complex intervention. The TIDieR checklist (with minor modification to increase applicability in this context) was distributed to NF researchers as a survey of current practice in the design and conduct of clinical studies. The aim was to document practice and convergence between research groups, highlighting areas for discussion and providing a basis for recommendations for harmonisation and standardisation. METHODS: The TIDieR checklist was interpreted and expanded (21 questions) to make it applicable to neurofeedback research studies. Using the web-based Bristol Online Survey (BOS) tool, the revised checklist was disseminated to researchers in the BRAINTRAIN European research collaborative network (supported by the European Commission) and others in the fMRI-neurofeedback community. RESULTS: There were 16 responses to the survey. Responses were reported under eight main headings which covered the six domains of the TIDieR checklist: What, Why, When, How, Where and Who. CONCLUSIONS: This piece of work provides encouraging insight into the ability to be able to map neuroimaging interventions to a structured framework for reporting purposes. Regardless of the considerable variability of design components, all studies could be described in standard terms of diagnostic groups, dose/duration, targeted areas/signals, and psychological strategies and learning models. Recommendations are made which include providing detailed rationale of intervention design in study protocols.


Assuntos
Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Neurorretroalimentação/métodos , Neuroimagem/métodos , Projetos de Pesquisa/normas , Lista de Checagem/normas , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários
19.
Cereb Cortex ; 27(2): 1193-1202, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26679192

RESUMO

Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders.


Assuntos
Emoções/fisiologia , Aprendizagem/fisiologia , Rede Nervosa/fisiologia , Neurorretroalimentação , Adulto , Tonsila do Cerebelo/fisiologia , Comportamento , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Testes Neuropsicológicos , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia
20.
Brain Imaging Behav ; 11(3): 915-924, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27233784

RESUMO

FMRI-based neurofeedback transforms functional brain activation in real-time into sensory stimuli that participants can use to self-regulate brain responses, which can aid the modification of mental states and behavior. Emerging evidence supports the clinical utility of neurofeedback-guided up-regulation of hypoactive networks. In contrast, down-regulation of hyperactive neural circuits appears more difficult to achieve. There are conditions though, in which down-regulation would be clinically useful, including dysfunctional motivational states elicited by salient reward cues, such as food or drug craving. In this proof-of-concept study, 10 healthy females (mean age = 21.40 years, mean BMI = 23.53) who had fasted for 4 h underwent a novel 'motivational neurofeedback' training in which they learned to down-regulate brain activation during exposure to appetitive food pictures. FMRI feedback was given from individually determined target areas and through decreases/increases in food picture size, thus providing salient motivational consequences in terms of cue approach/avoidance. Our preliminary findings suggest that motivational neurofeedback is associated with functionally specific activation decreases in diverse cortical/subcortical regions, including key motivational areas. There was also preliminary evidence for a reduction of hunger after neurofeedback and an association between down-regulation success and the degree of hunger reduction. Decreasing neural cue responses by motivational neurofeedback may provide a useful extension of existing behavioral methods that aim to modulate cue reactivity. Our pilot findings indicate that reduction of neural cue reactivity is not achieved by top-down regulation but arises in a bottom-up manner, possibly through implicit operant shaping of target area activity.


Assuntos
Encéfalo/fisiologia , Fissura/fisiologia , Alimentos , Imageamento por Ressonância Magnética , Neurorretroalimentação , Percepção Visual/fisiologia , Aprendizagem da Esquiva/fisiologia , Encéfalo/diagnóstico por imagem , Comportamento de Escolha/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Fome/fisiologia , Motivação/fisiologia , Neurorretroalimentação/métodos , Estimulação Luminosa/métodos , Projetos Piloto , Estudo de Prova de Conceito , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA