Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319311

RESUMO

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Antituberculosos , Moxifloxacina/uso terapêutico , Tuberculose/tratamento farmacológico
2.
Integr Biol (Camb) ; 5(7): 932-9, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23732791

RESUMO

Through microfluidic interrogation we analyzed real-time calcium responses of HEK293 cells stimulated with short pulses of the M3 muscarinic receptor ligand carbachol in two different concentration regimes. Lower ligand concentrations elicit oscillatory calcium signals while higher concentrations trigger a rapid rise that eventually settles down at a steady-state slightly above pre-stimulus levels, referred to as an acute signal. Cells were periodically pulsed with carbachol at these two concentration regimes using a custom-made microfluidic platform, and the resulting calcium signals were measured with a single fluorescent readout. Pulsed stimulations at these two concentration regimes resulted in multiple types of response patterns that each delivered complementary information about the M3 muscarinic receptor signaling pathway. These multiple types of calcium response patterns enabled development of a comprehensive mathematical model of multi-regime calcium signaling. The resulting model suggests that dephosphorylation of deactivated receptors is rate limiting for recovery of calcium signals in the acute regime (high ligand concentration), while calcium replenishment and IP3 production determine signal recovery in the oscillatory regime (low ligand concentration). This study not only provides mechanistic insight into multi-regime signaling of the M3 muscarinic receptor pathway, but also provides a general strategy for analyzing multi-regime pathways using only one fluorescent readout.


Assuntos
Sinalização do Cálcio , Modelos Biológicos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Células HEK293 , Humanos , Microfluídica/métodos , Fosforilação , Receptor Muscarínico M3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA