Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2023: 6726654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819778

RESUMO

It is an effective strategy to treat tuberculosis by enhancing reactive oxygen species- (ROS-) mediated killing of Mycobacterium tuberculosis in macrophages, but there are no current therapeutic agents targeting this pathway. Honeysuckle has been used as the traditional medicine for tuberculosis treatment for 1500 years. Japoflavone D (JFD) is a novel biflavonoid isolated from Honeysuckle promoting ROS accumulation by Nrf2 pathway in hepatocarcinoma cells. However, its activity to kill M. tuberculosis in macrophages and molecular mechanism has not been reported. Our results showed that JFD enhances the M. tuberculosis elimination by boosting ROS levels in THP-1 cells. Moreover, the massive ROS accumulation activates p38 to induce apoptosis. Notably, the mechanism revealed that JFD suppresses the nuclear transport of Nrf2, thereby inhibiting SOD2 transcription, leading to a large ROS accumulation. Further studies showed that JFD disrupts the Keap1 alkylation at specific residues Cys14, Cys257, and Cys319, which is crucial for Nrf2 activation, thereby interrupts the nuclear transport of Nrf2. In pharmacokinetic study, JFD can stay as the prototype for 24 h in mice and can be excreted in feces without any toxicity. Our data reveal for the first time that a novel biflavonoid JFD as a potent inhibitor of Keap1 alkylation can suppress the nuclear transport of Nrf2. And it is the first research of the inhibitor of Keap1 alkylation. Furthermore, JFD robustly promotes M. tuberculosis elimination from macrophages by inhibiting Keap1/Nrf2/SOD2 pathway, resulting in the ROS accumulation. This work identified Keap1 alkylation as a new drug target for tuberculosis and provides a preliminary basis for the development of antituberculosis lead compounds based on JFD.


Assuntos
Biflavonoides , Mycobacterium tuberculosis , Animais , Camundongos , Alquilação , Biflavonoides/farmacologia , Flavonas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
2.
Comput Math Methods Med ; 2022: 9604456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237344

RESUMO

OBJECTIVE: To investigate the potential pharmacological value of extracts from honeysuckle on patients with mild coronavirus disease 2019 (COVID-19) infection. METHODS: The active components and targets of honeysuckle were screened by Traditional Chinese Medicine Database and Analysis Platform (TCMSP). SwissADME and pkCSM databases predict pharmacokinetics of ingredients. The Gene Expression Omnibus (GEO) database collected transcriptome data for mild COVID-19. Data quality control, differentially expressed gene (DEG) identification, enrichment analysis, and correlation analysis were implemented by R toolkit. CIBERSORT evaluated the infiltration of 22 immune cells. RESULTS: The seven active ingredients of honeysuckle had good oral absorption and medicinal properties. Both the active ingredient targets of honeysuckle and differentially expressed genes of mild COVID-19 were significantly enriched in immune signaling pathways. There were five overlapping immunosignature genes, among which RELA and MAP3K7 expressions were statistically significant (P < 0.05). Finally, immune cell infiltration and correlation analysis showed that RELA, MAP3K7, and natural killer (NK) cell are with highly positive correlation and highly negatively correlated with hematopoietic stem cells. CONCLUSION: Our analysis suggested that honeysuckle extract had a safe and effective protective effect against mild COVID-19 by regulating a complex molecular network. The main mechanism was related to the proportion of infiltration between NK cells and hematopoietic stem cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/uso terapêutico , Lonicera , Farmacologia em Rede , Fitoterapia , SARS-CoV-2 , Antivirais/química , Antivirais/farmacocinética , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/imunologia , Biologia Computacional , Bases de Dados de Produtos Farmacêuticos/estatística & dados numéricos , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/imunologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Lonicera/química , Medicina Tradicional Chinesa , Pandemias , SARS-CoV-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA