Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Research (Wash D C) ; 6: 0276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034083

RESUMO

Non-alcoholic fatty liver disease, especially nonalcoholic steatohepatitis (NASH), is a leading cause of cirrhosis and liver cancer worldwide; nevertheless, there are no Food and Drug Administration-approved drugs for treating NASH until now. Peroxisome proliferator-activated receptor alpha (PPARα) is an interesting therapeutic target for treating metabolic disorders in the clinic, including NASH. Herpetrione, a natural lignan compound isolated from Tibetan medicine Herpetospermum caudigerum, exerts various hepatoprotective effects, but its efficacy and molecular mechanism in treating NASH have not yet been elucidated. Here, we discovered that herpetrione lessened lipid accumulation and inflammation in hepatocytes stimulated with oleic acid and lipopolysaccharide, and effectively alleviated NASH caused by a high-fat diet or methionine-choline-deficient diet by regulating glucolipid metabolism, insulin resistance, and inflammation. Mechanistically, RNA-sequencing analyses further showed that herpetrione activated PPAR signaling, which was validated by protein expression. Furthermore, the analysis of molecular interactions illustrated that herpetrione bound directly to the PPARα protein, with binding sites extending to the Arm III domain. PPARα deficiency also abrogated the protective effects of herpetrione against NASH, suggesting that herpetrione protects against hepatic steatosis and inflammation by activation of PPARα signaling, thereby alleviating NASH. Our findings shed light on the efficacy of a natural product for treating NASH, as well as the broader prospects for NASH treatment by targeting PPARα.

2.
J Chromatogr A ; 1668: 462920, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35248869

RESUMO

Herein, a novel covalent organic polymers (COP) material based on acylhydrazone bond (AB-COP) was prepared as an efficient extraction material for enriching natural medicine biflavonoids from Selaginella doederleinii Hieron. The obtained AB-COP structure was characterized in detail. And it was the first time to investigate the effect of AB-COP on the adsorption of biflavonoids. The effects of initial concentration of solution, adsorption temperature, solid-liquid ratio, adsorption time on the adsorption of biflavonoids were studied. In addition, adsorption kinetic model, adsorption thermodynamic model and density functional theory (DFT) were also investigated to evaluate the adsorption mechanism. At the same time, the static desorption and reusability of AB-COP were investigated. Finally, the dynamic enrichment effect of AB-COP for biflavonoids was investigated. The results showed that AB-COP was successfully synthesized by Fourier transform infrared spectroscopy (FT-IR), solid state nuclear magnetism (NMR), X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), laser particle size analysis and Brunner Emmet Teller (BET) specific surface area test. The optimized adsorption parameters of AB-COP were initial concentration of 0.5 mg/mL, temperature of 45 °C, solid-liquid ratio of 10:10 (mg/mL), adsorption time of 60 min. The Langmuir adsorption isotherm could effectively describe the adsorption process, the pseudo-secondary adsorption model could accurately explain the adsorption mechanism, and the DFT calculations revealed that the interaction forces of AB-COP and biflavonoids were π-π stacking and hydrogen bonding. In addition, AB-COP successfully resolved biflavonoids through urea-methanol (1.3 mol/L), and the material can be reused at least four times. Finally, the solid phase extraction (SPE) chromatographic column prepared by AB-COP was successfully applied to the enrichment of biflavonoids from S. doederleinii, and the effect was significantly better than traditional chromatography materials, andthis method was also successfully applied to the enrichment of flavonoids in other plant extracts including Flos sophorae, Pericarpium viride, Lophatheri herba, Herba cuscutae. These results provide references for further purification of bioactive ingredients from plant extracts by using AB-COP.


Assuntos
Biflavonoides , Selaginellaceae , Poluentes Químicos da Água , Adsorção , Biflavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Selaginellaceae/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Phytochemistry ; 193: 113010, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34768184

RESUMO

The seeds of Herpetospermum pedunculosum (Ser.) C.B. Clarke, a well-known Tibetan medicine in China, are rich in kinds of bioactive lignans. In this phytochemical investigation on H. pedunculosum, sixteen undescribed lignans, named as herpedulins A - P together with 24 known ones were isolated from the ethyl acetate extract of its seeds. Their structures including the absolute configurations were determined by HR MS, 1D and 2D NMR experiments, and comparison of their experimental ECD spectra with calculated ones or literature data. High content screening experiments revealed that 9 compounds could promote the expression of farnesoid X receptor in guggulsterone-induced human normal liver cells L02 cells significantly. Further molecular docking results demonstrated that herpedulin E, J and K exhibited best docking scores (9.70, 9.28 and 10.31, respectively). Hydrogen bonding and hydrophobic interactions might contribute to the main interaction of active compounds with FXR.


Assuntos
Cucurbitaceae , Lignanas , Lignanas/farmacologia , Fígado , Simulação de Acoplamento Molecular , Estrutura Molecular , Sementes
4.
Fitoterapia ; 143: 104586, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32247772

RESUMO

Two new dihydrophenanthrofurans (1 and 2) and two new bisbibenzyl derivatives (3 and 4) were isolated from the traditional Chinese medicinal plant Dendrobium nobile, along with four known compounds (5-8). The absolute configurations of compounds 1 and 4 were elucidated through extensive NMR and ECD spectroscopic analyses. New compounds showed no antimicrobial activity against four gram-positive bacterial strains and four gram-negative bacteria at the concentration of 1 mg/mL, but displayed significant cytotoxic activity against HepG2 human hepatic cell line with the IC50 values ranging from 1.25 µM to 19.47 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dendrobium/química , Furanos/farmacologia , Fenantrenos/farmacologia , Caules de Planta/química , Antineoplásicos Fitogênicos/isolamento & purificação , Furanos/isolamento & purificação , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Células Hep G2 , Humanos , Estrutura Molecular , Fenantrenos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química
5.
J Ethnopharmacol ; 155(1): 326-33, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24882730

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Mirabilis himalaica have been used in Tibetan folk medicine for treatment of uterine cancer, nephritis edematous, renal calculus and arthrodynia. In our previous work, the ethanol extract of roots had shown potent cytotoxicity against human cancer cells. However, no information is available on the antitumor effect of Mirabilis himalaica. The aim of the present study was to investigate the active constituents guided by bioassay and evaluate the related antitumor efficacy in vitro and in vivo. MATERIALS AND METHODS: The active subextract (ethyl acetate) was subjected to successive chemical separation using a combination of silica gel, LH-20 chromatography and semi-preparative HPLC. The structures were determined by spectroscopic analysis techniques such as nuclear magnetic resonance (NMR) and mass spectrometry. Three human cancer cell lines, A549, HepG2 and HeLa were used for in vitro cytotoxicity evaluation of all isolated compounds by MTT-assay. Then, the potent and novel compound mirabijalone E was employed to the mechanism study againstA549 cells. BrdU immunofluorescence, soft agar assay and cell cycle analysis were employed to detect the cell proliferation effects. Annexin V-FITC/PI staining assay was used for examining apoptotic effects. Expression levels of apoptosis-related proteins were determined by western blot assay. in vivo tumorigenic assay was used to evaluate the xenograft tumor growth treated with mirabijalone E. RESULTS: One new rotenoid compound, mirabijalone E, together with eight known rotenoids was isolated from Mirabilis himalaica. Mirabijalone E, 9-O-methyl-inone B, boeravinone C and boeravinone H exhibited cytotoxicity against A 549 and HeLa cells. Further study on mirabijalone E was carried out in vitro and in vivo. Mirabijalone E inhibited A549 cells growth in a time and dose-dependent manner, which arrested cell cycle in S phase. Mechanistically, mirabijalone E treatment resulted in the increase of Bax expression level, the decrease of Bcl-2 level and the activation of caspase-3, which suggested the activation of apoptosis cascades. Consequently, the xenograft treated with mirabijalone E showed markedly suppressed tumor growth. CONCLUSIONS: The result suggested that mirabijalone E, together with active compounds, 9-O-methyl-4-hydroxyboeravinone B, boeravinone C and boeravinone H could be a promising candidate for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Mirabilis/química , Extratos Vegetais/farmacologia , Rotenona/análogos & derivados , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Masculino , Medicina Tradicional Tibetana , Camundongos , Camundongos Mutantes Neurológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Extratos Vegetais/administração & dosagem , Raízes de Plantas , Rotenona/administração & dosagem , Rotenona/isolamento & purificação , Rotenona/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA