RESUMO
Lycium barbarum polysaccharides (LBP) are major bioactive constituents of wolfberry which possess several pharmacological effects such as antioxidant and immunomodulatory activities. We aimed to evaluate how LBP attenuated the hepatic injury in a non-alcoholic steatohepatitis (NASH) methionine-choline deficient (MCD) mouse model. NASH was induced in C57BL/6N mice by feeding with MCD diet for 6â¯weeks. During the experiments, 1â¯mg/kg LBP was intragastrically fed on a daily basis with or without MCD diet lasting from the 4th to 6th week. Control and vehicle-control (LBPâ¯+â¯PBS) were fed with a regular animal chow. LBP significantly ameliorated NASH-induced injuries, including the increase of serum ALT and AST levels, hepatic oxidative stress, fibrosis, inflammation, and apoptosis. The hepatoprotective effects of LBP were accompanied by the attenuation of thioredoxin interacting protein, nod-like receptor protein 3/6 (NLRP3/6) and reduced NF-κB (nuclear factor-kappa B) activity. Vehicle LBP fed mice showed no adverse effect on the liver. In conclusion, the suppression of the NLRP3/6 inflammasome pathway and NF-κB activation may partly contribute to the reduction of the hepatic injury during the progression of NASH by therapeutic LBP treatment.
Assuntos
Dieta/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Colina/análise , Modelos Animais de Doenças , Feminino , Fibrose , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/análise , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacosRESUMO
This study aimed to investigate the possible therapeutic effects and active components of Lycium barbarum polysaccharides (LBP) on a high fat diet-induced NASH rat model. We induced NASH in a rat model by voluntary oral feeding with a high-fat diet ad libitum for 8 weeks. After 8 weeks, 1â mg/kg LBP was orally administered for another 4 weeks with a high-fat diet. When compared with NASH rats treated for 12 weeks, therapeutic LBP treatment for 4 weeks during 12 weeks of NASH induction showed ameliorative effects on: (1) increased body and wet liver weights; (2) insulin resistance and glucose metabolic dysfunction; (3) elevated level of serum aminotransferases; (4) fat accumulation in the liver and increased serum free fatty acid (FFA) level; (5) hepatic fibrosis; (6) hepatic oxidative stress; (7) hepatic inflammatory response; and (8) hepatic apoptosis. These improvements were partially through the modulation of transcription factor NF-κB, MAPK pathways and the autophagic process. In a palmitate acid-induced rat hepatocyte steatosis cell-based model, we also demonstrated that l-arabinose and ß-carotene partially accounted for the beneficial effects of LBP on the hepatocytes. In conclusion, LBP possesses a variety of hepato-protective properties which make it a potent supplementary therapeutic agent against NASH in future clinical trials.
Assuntos
Fármacos Antiobesidade/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Apoptose , Arabinose/farmacologia , Autofagia , Sobrevivência Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/tratamento farmacológico , Estresse Oxidativo , Ratos Sprague-Dawley , beta Caroteno/farmacologiaRESUMO
In the current study, the therapeutic effects of zeaxanthin dipalmitate (ZD) on a rat alcoholic fatty liver disease (AFLD) model were evaluated. After-treatment with ZD from the 5th week to the 10th week in a 10-week ethanol intragastric administration in rats significantly alleviated the typical AFLD symptoms, including reduction in rat body weight, accumulation of hepatic fat droplets, occurrence of oxidative stress, inflammation, chemoattractive responses and hepatic apoptosis in the liver. The reduction of liver function abnormalities by ZD was partly through lower expression level of cytochrome P450 2E1 (CYP2E1), diminished activity of nuclear factor kappa B (NF-κB) through the restoration of its inhibitor kappa B alpha (IκBα), and the modulation of MAPK pathways including p38 MAPK, JNK and ERK. ZD treatment alone did not pose obvious adverse effect on the healthy rat. In the cellular AFLD model, we also confirmed the inhibition of p38 MAPK and ERK abolished the beneficial effects of ZD. These results provide a scientific rationale for the use of zeaxanthin and its derivatives as new complementary agents for the prevention and treatment of alcoholic liver diseases.
Assuntos
Antioxidantes/farmacologia , Etanol/administração & dosagem , Fígado Gorduroso Alcoólico/tratamento farmacológico , Palmitatos/farmacologia , Substâncias Protetoras/farmacologia , Xantofilas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Feminino , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Redução de Peso/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
PURPOSE: To investigate the protective mechanisms of an 85 % pure extract of (-) epigallocatechin gallate (EGCG) in the development of fibrosis, oxidative stress and inflammation in a recently developed dietary-induced animal model of non-alcoholic fatty liver disease (NAFLD). METHODS: Female Sprague-Dawley rats were fed with either normal rat diet or high-fat diet for 8 weeks to develop NAFLD. For both treatments, rats were treated with or without EGCG (50 mg/kg, i.p. injection, 3 times per week). At the end, blood and liver tissue samples were obtained for histology, molecular, and biochemical analyses. RESULTS: Non-alcoholic fatty liver disease (NAFLD) rats showed significant amount of fatty infiltration, necrosis, fibrosis, and inflammation. This was accompanied by a significant expressional increase in markers for fibrosis, oxidative stress, and inflammation. TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways were also activated. Treatment with EGCG improved hepatic histology (decreased number of fatty score, necrosis, and inflammatory foci), reduced liver injury (from ~0.5 to ~0.3 of ALT/AST ratio), attenuated hepatic changes including fibrosis (reduction in Sirius Red and synaptophysin-positive stain) with down-regulation in the expressions of key pathological oxidative (e.g. nitrotyrosine formation) and pro-inflammatory markers (e.g. iNOS, COX-2, and TNF-α). EGCG treatment also counteracted the activity of TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways. Treatment with EGCG did not affect the healthy rats. CONCLUSIONS: Epigallocatechin gallate (EGCG) reduced the severity of liver injury in an experimental model of NAFLD associated with lower concentration of pro-fibrogenic, oxidative stress, and pro-inflammatory mediators partly through modulating the activities of TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways. Therefore, green tea polyphenols and EGCG are useful supplements in the prevention of NAFLD.
Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Catequina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Fígado Gorduroso/patologia , Feminino , Fibrose , Fatores de Transcrição Forkhead/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Smad/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Our previous study demonstrated that administration of garlic-derived antioxidant S-allylmercaptocysteine (SAMC) ameliorated hepatic injury in a nonalcoholic fatty liver disease (NAFLD) rat model. Our present study aimed to investigate the mechanism of SAMC on NAFLD-induced hepatic apoptosis and autophagy. Adult female rats were fed with a high-fat diet for 8 weeks to develop NAFLD with or without intraperitoneal injection of 200 mg/kg SAMC for three times per week. During NAFLD development, increased apoptotic cells and caspase-3 activation were observed in the liver. Increased apoptosis was modulated through both intrinsic and extrinsic apoptotic pathways. NAFLD treatment also enhanced the expression of key autophagic markers in the liver with reduced activity of LKB1/AMPK and PI3K/Akt pathways. Increased expression of proapoptotic regulator p53 and decreased activity of antiautophagic regulator mTOR were also observed. Administration of SAMC reduced the number of apoptotic cells through downregulation of both intrinsic and extrinsic apoptotic mechanisms. SAMC also counteracted the effects of NAFLD on LKB1/AMPK and PI3K/Akt pathways. Treatment with SAMC further enhanced hepatic autophagy by regulating autophagic markers and mTOR activity. In conclusion, administration of SAMC during NAFLD development in rats protects the liver from chronic injury by reducing apoptosis and enhancing autophagy.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver injury across the world. It is also strongly related to other pathological conditions, including obesity, diabetes, cardiovascular diseases, and symptoms of metabolic syndrome. Pathogenesis of NAFLD remains not fully characterized but is generally attributed to the occurrence of insulin resistance, lipid metabolism dysfunction,0 oxidative stress, inflammation, and necro-apoptosis. Every potential therapeutic strategy should target one or some of these pathological events in the liver. Over the past decades, application of herbal treatment for NAFLD has received increasing attention due to its wide availability, low side effects, and proven therapeutic mechanisms and benefits. In recent years, some monomers and certain functional mixtures of herbs have been extensively examined for their potential uses in NAFLD treatment. In the present review, we selected several herbal derivatives under intense basic and/or clinical investigations by carrying out a PubMed search of English language articles relevant to herbal derivatives and NAFLD, such as polysaccharide portion of wolfberry, garlic-derived monomers, red grape-derived resveratrol, and milk thistle-derived substances. They have been shown to target the pathological events during NAFLD initiation and progression both in pre-clinical studies and clinical trials. Although more detailed mechanistic researches and long-term clinical evaluations are needed for their future applications, they offer unanticipated and great health benefits without obvious adverse effects in NAFLD therapy.
RESUMO
PURPOSE: To investigate the hepato-protective properties and underlying mechanisms of SAMC in a non-alcoholic fatty liver disease (NAFLD) rat model. METHODS: Female rats were fed with a diet comprising highly unsaturated fat diet (30% fish oil) for 8 weeks to develop NAFLD with or without an intraperitoneal injection of 200 mg/kg SAMC three times per week. After euthanasia, blood and liver samples of rats were collected for histological and biochemical analyses. RESULTS: Co-treatment of SAMC attenuated NAFLD-induced liver injury, fat accumulation, collagen formation and free fatty acids (FFAs). At the molecular level, SAMC decreased the lipogenesis marker and restored the lipolysis marker. SAMC also reduced the expression levels of pro-fibrogenic factors and diminished liver oxidative stress partly through the inhibition in the activity of cytochrome P450 2E1-dependent pathway. NAFLD-induced inflammation was also partially mitigated by SAMC treatment via reduction in the pro-inflammatory mediators, chemokines and suppressor of cytokine signaling. The protective effect of SAMC is also shown partly through the restoration of altered phosphorylation status of FFAs-dependent MAP kinase pathways and diminished in the nuclear transcription factors (NF-κB and AP-1) activity during NAFLD development. CONCLUSIONS: SAMC is a novel hepato-protective agent against NAFLD caused by abnormal liver functions. Garlic or garlic derivatives could be considered as a potent food supplement in the prevention of fatty liver disease.
Assuntos
Cisteína/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Alho/química , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Western Blotting , Cisteína/farmacologia , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Inibidores do Citocromo P-450 CYP2E1 , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/genética , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismoRESUMO
BACKGROUND: Thromboxane levels are increased in rats fed ethanol (EtOH), whereas thromboxane inhibitors reduce alcoholic liver injury. The aim of this study is to determine whether thromboxane inhibitors could attenuate the already established alcoholic liver injury. METHODS: Rats were fed EtOH and liquid diet for 6 weeks by intragastric infusion to induce liver injury after which EtOH was continued for 2 more weeks, and the rats were treated with either a thromboxane synthase inhibitor (TXSI) or a thromboxane receptor antagonist (TXRA). Liver pathology, lipid peroxidation, nuclear factor-kappa-B (NF-κB) activity, tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and transforming growth factor-beta1 (TGF-ß(1) ) were evaluated. RESULTS: Administration of fish oil and EtOH caused fatty liver, necrosis, inflammation and fibrosis accompanied by increased in lipid peroxidation, NF-κB activity, and expression of TNF-α, COX-2, and TGF-ß(1) . Treatment with the thromboxane inhibitors ameliorated a certain level of the pathological and biochemical abnormalities. In particular, TXSI in addition to reducing necrosis, inflammation and fibrosis also decrease the severity of fatty liver. CONCLUSIONS: Thromboxane inhibitors attenuated the alcoholic liver injury, inflammation and fibrotic changes despite continued EtOH administration. Inhibition of the production of thromboxane by thromboxane inhibitor and receptor antagonists may be a useful treatment strategy in clinical alcoholic liver disease.
Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Etanol/efeitos adversos , Fígado Gorduroso Alcoólico/tratamento farmacológico , Oxazóis/uso terapêutico , Piridinas/uso terapêutico , Receptores de Tromboxanos/antagonistas & inibidores , Tromboxano-A Sintase/antagonistas & inibidores , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Endotoxinas/sangue , Etanol/administração & dosagem , Fígado Gorduroso Alcoólico/sangue , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/patologia , Fibrose , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , NF-kappa B/metabolismo , Oxazóis/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/sangue , Fator de Necrose Tumoral alfa/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Lycium barbarum has been used as a traditional Chinese medicine to nourish liver, kidneys and the eyes. AIM OF THE STUDY: We investigated the protective mechanisms of Wolfberry, Lycium barbarum polysaccharides (LBP) in carbon tetrachloride (CCl(4))-induced acute liver injury. MATERIALS AND METHODS: Mice were intraperitoneally injected with a 50 µl/kg CCl(4) to induce acute hepatotoxicity (8h) and were orally fed with LBP 2 h before the CCl(4) injection. There were six experimental groups of mice (n=7-8 per group), namely: control mice (vehicle only; 1 mg/kg LBP or 10 mg/kg LBP), CCl(4)-treated mice and CCl(4)+LBP treated mice (1 mg/kg LBP or 10 mg/kg LBP). RESULTS: Pre-treatment with LBP effectively reduced the hepatic necrosis and the serum ALT level induced by CCl(4) intoxication. LBP remarkably inhibited cytochrome P450 2E1 expression and restored the expression levels of antioxidant enzymes. It also decreased the level of nitric oxide metabolism and lipid peroxidation induced by CCl(4). LBP attenuated hepatic inflammation via down-regulation of proinflammatory mediators and chemokines. Furthermore, LBP promoted liver regeneration after CCl(4) treatment. The protective effects of LBP against hepatotoxicity were partly through the down-regulation of nuclear factor kappa-B activity. CONCLUSION: LBP is effective in reducing necroinflammation and oxidative stress induced by a chemical toxin, thus it has a great potential use as a food supplement in the prevention of hepatic diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Fígado/efeitos dos fármacos , Lycium , Estresse Oxidativo/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/metabolismo , Inibidores do Citocromo P-450 CYP2E1 , Citocinas/genética , Citocinas/metabolismo , Citoproteção , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lycium/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Necrose , Óxido Nítrico/metabolismo , Plantas MedicinaisRESUMO
PURPOSE: To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. METHODS: Mice were intraperitoneally injected with CCl4 (50 µl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. RESULTS: SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. CONCLUSIONS: Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cisteína/análogos & derivados , Inflamação/prevenção & controle , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Cisteína/farmacologia , Feminino , Inflamação/induzido quimicamente , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/sangue , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismoRESUMO
BACKGROUND: Recently, considerable attention has been focused on dietary and medicinal phytochemicals that inhibit, reverse, or retard diseases caused by oxidative and inflammatory processes. Green tea polyphenols have both antioxidant and antiinflammatory properties. OBJECTIVE: We examined the effects of green tea polyphenols in carbon tetrachloride-treated mice, a model of liver injury in which oxidant stress and cytokine production are intimately linked. We tested the effect of a pure form of epigallocatechin gallate (EGCG), the major polyphenol in green tea, in mice treated with carbon tetrachloride. DESIGN: Eight-week-old ICR mice were administered 20 microL/CCl(4) kg dissolved in olive oil. Two different doses of EGCG, 50 and 75 mg/kg, were tested. Control mice were treated with saline and olive oil. We analyzed liver histopathology, lipid peroxidation, and messenger RNA and protein concentrations of inducible nitric oxide synthase. Additionally, nitric oxide-generated radicals were assessed by electron paramagnetic resonance spectroscopy, and protein concentrations were measured by immunohistochemistry and Western blot analysis. RESULTS: Carbon tetrachloride administration caused an intense degree of liver necrosis associated with increases in lipid peroxidation, inducible nitric oxide synthase messenger RNA and protein, nitrotyrosine, and nitric oxide radicals. EGCG administration led to a dose-dependent decrease in all of the histologic and biochemical variables of liver injury observed in the carbon tetrachloride-treated mice. CONCLUSIONS: Green tea polyphenols reduce the severity of liver injury in association with lower concentrations of lipid peroxidation and proinflammatory nitric oxide-generated mediators. Green tea polyphenols can be a useful supplement in the treatment of liver disease and should be considered for liver conditions in which proinflammatory and oxidant stress responses are dominant.