Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 616(7955): 104-112, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813964

RESUMO

Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.


Assuntos
Organismos Aquáticos , Segurança Alimentar , Internacionalidade , Alimentos Marinhos , Desenvolvimento Sustentável , Humanos , Dieta/métodos , Dieta/estatística & dados numéricos , Dieta/tendências , Meio Ambiente , Carne , Estado Nutricional , Internacionalidade/legislação & jurisprudência , Alimentos Marinhos/economia , Alimentos Marinhos/estatística & dados numéricos , Alimentos Marinhos/provisão & distribuição , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Segurança Alimentar/economia , Segurança Alimentar/legislação & jurisprudência , Segurança Alimentar/métodos , Mudança Climática , Política de Saúde , Política Ambiental , Fatores Socioeconômicos , Características Culturais , Ácidos Graxos Ômega-3 , Pegada de Carbono , Doenças Cardiovasculares/epidemiologia
2.
Foods ; 11(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35564057

RESUMO

This study tested the efficacy of a pond polyculture intervention with farming households in northern Zambia. Longitudinal data on fish consumption and the associated nutrient intake of households (N = 57) were collected over a six-month period (September 2019-March 2020). One group of people tested the intervention while another group that practiced monoculture tilapia farming, and a third group that did not practice aquaculture, acted as control groups. A similar quantity of fish was consumed on average; however, the associated nutrient intake differed, based on the quantity and type of species consumed, particularly for those who had access to pelagic small fish from capture fisheries. There was a decrease in fish consumption from December onward due to fisheries management restrictions. The ponds provided access to micronutrient-rich fish during this time. Pond polyculture can act as a complementary source of fish to capture fisheries that are subjected to seasonal controls, as well as to households that farm tilapia. Assessments of how aquatic foods can improve food and nutrition security often separate aquaculture and capture fisheries, failing to account for people who consume fish from diverse sources simultaneously. A nutrition-sensitive approach thus places food and nutrition security, and consumers, at the center of the analysis.

3.
Lipids ; 42(6): 547-59, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17473942

RESUMO

A 20-week feeding trial was conducted to determine whether increasing linolenic acid (18:3n-3) in vegetable oil (VO) based diets would lead to increased tissue deposition of 22:6n-3 in Nile tilapia (Oreochromis niloticus). Five isonitrogenous and isoenergetic diets were supplemented with 3% of either linseed oil (LO), a mixture of linseed oil with refined palm olein oil (PO) (LO-PO 2:1) and a mixture of refined palm olein oil with linseed oil (PO-LO 3:2) or with fish oil (FO) or corn oil (CO) as controls. The PO-LO, LO-PO and LO diets supplied a similar amount of 18:2n-6 (0.5% of diet by dry weight) and 0.5, 0.7 and 1.1% of 18:3n-3, respectively. Increased dietary 18:3n-3 caused commensurate increases in longer-chain n-3 PUFA and decreases in longer-chain n-6 PUFA in the muscle lipids of tilapia. However, the biosynthetic activities of fish fed the LO-based diets were not sufficient to raise the tissue concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 to those of fish fed FO. The study suggests that tilapia (O. niloticus) has a limited capacity to synthesise 20:5n-3 and 22:6n-3 from dietary 18:3n-3. The replacement of FO in the diet of farmed tilapia with vegetable oils could therefore lower tissue concentrations of 20:5n-3 and 22:6n-3, and consequently produce an aquaculture product of lower lipid nutritional value for the consumer.


Assuntos
Ração Animal/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/metabolismo , Músculos/metabolismo , Tilápia/metabolismo , Ácido alfa-Linolênico/metabolismo , Animais , Aquicultura , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/análise , Óleos de Peixe/administração & dosagem , Produtos Pesqueiros/análise , Óleo de Semente do Linho/administração & dosagem , Óleo de Semente do Linho/metabolismo , Músculos/química , Necessidades Nutricionais , Valor Nutritivo , Óleo de Palmeira , Óleos de Plantas/administração & dosagem , Óleos de Plantas/metabolismo , Distribuição Aleatória , Ácido alfa-Linolênico/administração & dosagem
4.
J Agric Food Chem ; 54(12): 4304-10, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16756360

RESUMO

The total lipid content and fatty acid composition of the muscle tissue of tilapia (Oreochromis niloticus) and of hybrid red tilapia (Oreochromis sp.) from different culture systems and from the natural and artificial environment of Thailand were compared. Wild fish and fish reared under the most extensive conditions had a more favorable fatty acid profile for human consumption as they contained higher proportions of 18:3n-3, 20:5n-3, and 22:6n-3, higher n-3/n-6 PUFA ratios, and lower proportions of 18:2n-6. The muscle tissue of intensively cultured fish was characterized by increased fat deposition that was mainly saturated and monounsaturated fatty acids and 18:2n-6. It is undesirable for the consumer to reduce 20:5n-3 and 22:6n-3 in farmed tilapia and replace them with elevated 18:2n-6. It is recommended that the amount of 18:2n-6 in the feed of the intensively reared tilapia should be reduced by substituting vegetable oils rich in 18:2n-6 with oils rich in 18:1n-9 and/or 18:3n-3.


Assuntos
Aquicultura/métodos , Ciclídeos/metabolismo , Ácidos Graxos Insaturados/análise , Músculos/química , Fenômenos Fisiológicos da Nutrição , Ração Animal , Animais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Humanos , Lipídeos/análise , Óleos de Plantas/administração & dosagem , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA