Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 1): 158977, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155040

RESUMO

Nitrogen and phosphorus contamination in wastewater is a serious environmental concern and poses a global threat to sustainable development. In this paper, a comprehensive review of the studies on simultaneous nitrogen and phosphorus removal (SNPR) during 1986-2022 (538 publications) was conducted using bibliometrics, which showed that simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) is the most promising process. To better understand SNDPR, the dissolved oxygen, carbon to nitrogen ratio, carbon source type, sludge retention time, Cu2+ and Fe3+, pH, salinity, electron acceptor type of denitrifying phosphorus-accumulating organisms (DPAOs), temperature, and other influencing factors were analyzed. Currently, SNDPR has been successfully implemented in activated sludge systems, aerobic granular sludge systems, biofilm systems, and constructed wetlands; sequential batch mode of operation is a common means to achieve this process. SNDPR exhibits a significant potential for phosphorus recovery. Future research needs to focus on: (1) balancing the competitiveness between denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs, and countermeasures to deal with the effects of adverse conditions on SNDPR performance; (2) achieving SNDPR in continuous flow operation; and (3) maximizing the recovery of P during SNDPR to achieve resource sustainability. Overall, this study provides systematic and valuable information for deeper insights into SNDPR, which can help in further research.


Assuntos
Nitrificação , Fósforo , Esgotos , Desnitrificação , Eliminação de Resíduos Líquidos , Reatores Biológicos , Nitrogênio , Carbono
2.
Water Res ; 225: 119132, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155005

RESUMO

Simultaneously achieving efficient nitrogen (N) and phosphorus (P) removal without adding external carbon source is vital for carbon-neutral wastewater treatment. In this study, a novel cross-flow honeycomb bionic microbial carrier (CF) was developed to improve the efficiency of simultaneous nitrification, denitrification, and P removal (SNDPR) in an integrated fixed-film activated sludge (IFAS) system. A parallel laboratory-scale sequencing batch reactor with the commercialized microbial carriers (CM) (CM-IFAS) was performed as the comparative system for over 233 d The results demonstrated that CF-IFAS exhibited a more consistent N removal efficiency and better performance than CM-IFAS. In the CF-IFAS, the highest N and P removal efficiencies were 95.40% and 100%, respectively. Typical cycle analysis revealed that nitrate was primarily removed by the denitrifying glycogen-accumulating organisms in the CF-IFAS and by denitrifying phosphate-accumulating organisms in the CM-IFAS. The neutral community model showed that the microbial community assembly in both the reactors was driven by deterministic selection rather than stochastic factors. Compared to those in CM-IFAS, the microorganisms in CF-IFAS were more closely related to each other and had more keystone species: norank_f_norank_o_norank_c_OM190, SM1A02, Defluviicoccus, norank_f_ Saprospiraceae, and norank_f_Rhodocyclaceae. The absolute contents of the genes associated with N removal (bacterial amoA, archaeal amoA, NarG, NapA, NirS, and NirK) were higher in CF-IFAS than in CM-IFAS; the N cycle activity was also stronger in the CF-IFAS. Overall, the microecological environment differed between both systems. This study provides novel insights into the potential of bionic carriers to improve SNDPR performance by shaping microbial communities, thereby providing scientific guidance for practical engineering.


Assuntos
Nitrificação , Esgotos , Esgotos/microbiologia , Fósforo , Desnitrificação , Nitratos , Biônica , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Águas Residuárias , Nitrogênio , Carbono , Fosfatos , Glicogênio
3.
J Hazard Mater ; 431: 128547, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220117

RESUMO

Microplastics (MPs), nanoplastics (NPs) and antibiotic resistance genes (ARGs), as emerging pollutants, have been frequently detected in wastewater treatment plants. However, the behavior of phosphorus and ARGs under MP and NP (MP/NP) pressure in biological phosphorus removal (BPR) system is still unknown. This study investigated the effects of MP/NPs on phosphorus removal and ARGs propagation in BPR system. Results showed that MP/NPs had no influence on phosphorus removal, but significantly promoted the amplification of tetracycline resistance genes (TRGs). Moreover, the TRG abundance were more facilitated by MPs than NPs, and the TRGs of efflux pump and enzymatic modification mechanism were mainly enriched. Meanwhile, MP/NPs increased the transmission risk of multiple resistance genes and mobile gene elements (MGEs). Microbial communities demonstrated the main polyphosphate accumulating organisms shifted from Acinetobacter to unclassified_Gammaproteobacteria, which explained why phosphorus removal efficiency was unaffected with MP/NP addition. Correlation analysis revealed there was no significant correlation between ARGs and MGEs (intI1 and intI2), but the abundances of potential hosts of ARGs were significantly increased with MP/NP addition, implying microbial community structure changes rather than gene horizontal transfer was the main factor promoting ARG propagation under MP/NP pressure.


Assuntos
Antibacterianos , Microplásticos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Fósforo , Plásticos
4.
Environ Sci Technol ; 54(5): 2821-2831, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013402

RESUMO

Plastics waste and microplastics including polyethylene (PE) and polystyrene (PS) have been an environmental concern for years. Recent research has revealed that larvae of Galleria mellonella are capable of biodegrading low density PE film. In this study, we tested the feasibility of enhancing larval survival and the effect of supplementing the co-diet on plastic degradation by feeding the larvae beeswax or wheat bran as a co-diet. Significant mass loss of plastic was observed over a 21-day period, i.e., with respective consumption of 0.88 and 1.95 g by 150 larvae fed only either PS or PE. The formation of C═O and C-O containing functional groups and long chain fatty acids as the metabolic intermediates of plastics in the residual polymers indicated depolymerization and biodegradation. Supplementing beeswax and bran increased the survival rates but decreased the consumption of plastic. The changes in the gut microbiome revealed that Bacillus and Serratia were significantly associated with the PS and PE diets. Beeswax and bran showed different shaping effects on the core gut microbiome of larvae fed the PE and PS. These results suggest that supplementing the co-diet affected the physiological properties of the larvae and plastic biodegradation and shaped the core gut microbiome.


Assuntos
Microbioma Gastrointestinal , Mariposas , Animais , Suplementos Nutricionais , Larva , Plásticos , Polietileno , Poliestirenos
5.
Front Microbiol ; 8: 920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638368

RESUMO

The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 µM facilitated MFC start-up compared to 150 µM, 200 µM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter, which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

6.
Bioresour Technol ; 135: 630-4, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23127834

RESUMO

Fe(III) supplemented into microbial fuel cells (MFC) at initial start-up increased electricity generation by Shewanella oneidensis MR-1. The maximum power density reached 158.1 mW/m(2) with 6 mM Fe(III), compared with 73.9 mW/m(2) without Fe(III). A significant increase in power output was observed when MFC with established biofilm in the absence of Fe(III) was supplemented with Fe(III) afterward. The cell biomass of the anode biofilm of MFCs operated in the presence of Fe(III) was higher than that obtained without Fe(III). An optimum concentration of Fe(III) obviously improved electrochemical activity and the flavins secretion of strain MR-1. The results demonstrated that Fe(III) addition can enhance power generation by strain MR-1 due to the increase of cell biomass and flavins secretion.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Compostos Férricos/farmacologia , Shewanella/metabolismo , Biofilmes/efeitos dos fármacos , Biomassa , Técnicas Eletroquímicas , Eletrodos , Flavinas/metabolismo , Oxirredução/efeitos dos fármacos , Shewanella/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA