Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Colloids Surf B Biointerfaces ; 234: 113702, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113752

RESUMO

Promising findings have been emerged from studies utilizing n3 polyunsaturated fatty acids (PUFA) supplementation in animal models of inflammatory bowel disease (IBD). Introduction of marine phospholipids which combine n3 PUFA with phosphatidylcholine in a nanoliposome formulation offers enhanced pharmacological efficacy due to physical stability, improved bioavailability, and specific targeting to inflamed colitis tissues. In the present study, a marine phospholipid-based nanoliposome formulation was developed and optimized, resulting in nanovesicles of approximately 107.7 ± 1.3 nm in size, 0.18 ± 0.01 PDI, and - 32.03 ± 3.16 mV ZP. The nanoliposomes exhibited spherical vesicles with stable properties upon incubation at SGF as shown by the TEM, DLS, and turbidity measurements over 3 h. MPL nanoliposomes were cytocompatible until the concentration of 500 µg/mL as per MTT assay and taken by macrophages through macropinocytosis and caveolae pathways, and demonstrated significant inhibitory activity against reactive oxygen species (ROS) in LPS-stimulated macrophages. They were also shown to be blood-compatible and safe for administration in healthy mice. In a colitis mouse model, the nanoliposomes displayed preferential distribution in the inflamed gut, delaying the onset of colitis when administered prophylactically. These findings highlight the potential of marine phospholipid nanoliposomes as a promising therapeutic approach for managing inflammatory bowel disease.


Assuntos
Colite , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Animais , Camundongos , Fosfolipídeos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Fosfatidilcolinas , Lipossomos
2.
Front Pharmacol ; 14: 1210667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456755

RESUMO

Introduction: Type 2 diabetes (T2D) is a multifactorial complex chronic disease with a high prevalence worldwide, and Type 2 diabetes patients with different comorbidities often present multiple phenotypes in the clinic. Thus, there is a pressing need to improve understanding of the complexity of the clinical Type 2 diabetes population to help identify more accurate disease subtypes for personalized treatment. Methods: Here, utilizing the traditional Chinese medicine (TCM) clinical electronic medical records (EMRs) of 2137 Type 2 diabetes inpatients, we followed a heterogeneous medical record network (HEMnet) framework to construct heterogeneous medical record networks by integrating the clinical features from the electronic medical records, molecular interaction networks and domain knowledge. Results: Of the 2137 Type 2 diabetes patients, 1347 were male (63.03%), and 790 were female (36.97%). Using the HEMnet method, we obtained eight non-overlapping patient subgroups. For example, in H3, Poria, Astragali Radix, Glycyrrhizae Radix et Rhizoma, Cinnamomi Ramulus, and Liriopes Radix were identified as significant botanical drugs. Cardiovascular diseases (CVDs) were found to be significant comorbidities. Furthermore, enrichment analysis showed that there were six overlapping pathways and eight overlapping Gene Ontology terms among the herbs, comorbidities, and Type 2 diabetes in H3. Discussion: Our results demonstrate that identification of the Type 2 diabetes subgroup based on the HEMnet method can provide important guidance for the clinical use of herbal prescriptions and that this method can be used for other complex diseases.

3.
Int J Biol Macromol ; 223(Pt A): 418-432, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36356866

RESUMO

Because of the apparent stasis in antibiotic discoveries and the growth of multidrug resistance, Helicobacter pylori-associated gastric infections are difficult to eradicate. In the search for alternative therapy, the reductive amination of chitosan with mannose, followed by ionic gelation, produced mannose functionalized chitosan nanoparticles. Then, molecular docking and molecular dynamics (MD) simulations were conducted with H. pylori lectin (HPLectin) as a target protein involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. Changes in zeta potential and FTIR spectroscopy revealed that chitosan was functionalized with mannose. Time-kill, polystyrene adherence, and antibiofilm studies were utilized to assess nanoparticles as an alternative antibacterial treatment against a resistant gastric pathogen. Man-CS-Nps were discovered to have effective anti-adherence and biofilm disruption characteristics in suppressing the development of resistant H. pylori. In addition, bioimaging studies with CLSM, TEM, and SEM illustrated that Man-CS-Nps interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Man-CS-Nps inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues. As a consequence of the findings of this study, the Man-CS-Nps is an excellent candidate for developing alternative therapies for the increasing incidences of resistant gastric infections.


Assuntos
Quitosana , Infecções por Helicobacter , Helicobacter pylori , Nanopartículas , Humanos , Quitosana/química , Manose/farmacologia , Simulação de Acoplamento Molecular , Nanopartículas/química , Antibacterianos/farmacologia , Infecções por Helicobacter/tratamento farmacológico
4.
J Pharm Biomed Anal ; 207: 114432, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34715580

RESUMO

The traditional Chinese medicine syndrome "Kidney yang deficiency" is a kind of chronic kidney disease. With the development of society, the incidence of chronic kidney disease is increasing year by year, which also brings great economic pressure to people. Semen Cuscutae is an important traditional Chinese medicine to tonify liver and kidney, mainly used to tonify deficiency of liver and kidney, spleen and kidney deficiency and diarrhea. Although there are a lot of research at the molecular and cellular level to study the Semen Cuscutae on the treatment of Kidney yang deficiency syndrome, but there's no comprehensive research complete with metabolomics method from plasma, feces and urine metabolites aspects. The purpose of this study is to find the potential differential biomarkers of the Kidney yang deficiency model and blank group rats in plasma, urine and feces, and to investigate the mechanism of Semen Cuscutae in the treatment of Kidney yang deficiency syndrome. In this study, ultra high-performance liquid chromatography-quadrupole time-of-flight Mass Spectrometry (UPLC-QTOF/MS) was used to identify potential biomarkers. Through the analysis of metabolic profiles of plasma, urine, and feces, as well as multivariate statistical analysis and pathway analysis, the therapeutic mechanism of Semen Cuscutae for Kidney yang deficiency syndrome was described. The results showed that there were 69 differential metabolites in plasma, 93 differential metabolites in feces and 62 differential metabolites in urine, and the changes of the levels of these biomarkers showed that Semen Cuscutae had a good therapeutic effect on Kidney yang deficiency syndrome. Through the analysis of the channel, the metabolite changes mainly affected the steroid hormone biosynthesis, arachidonic acid metabolism, primary bile acid biosynthesis, sheath lipid metabolism and biosynthesis of tyrosine, phenylalanine metabolism, retinol metabolism,taurine and hypotaurine metabolism, lysine degradation and vitamin B6 metabolism, tryptophan metabolism, terpenoid backbone biosynthesis and starch and sucrose metabolism. Therefore, the results suggested that Semen Cuscutae could exert a good therapeutic effect by reversing the levels of some biomarkers.


Assuntos
Metabolômica , Sêmen , Animais , Cromatografia Líquida de Alta Pressão , Rim , Espectrometria de Massas , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33505511

RESUMO

Prunella vulgaris, a traditional Chinese medicine, has been used to treat various benign and malignant tumours for centuries in China. In our previous studies, Prunella vulgaris extract (PVE) was shown to promote apoptosis in differentiated thyroid cancer (DTC) cells. However, whether other mechanisms are involved in the antitumour effect of PVE in thyroid cancer (TC) cells remains unclear. The present study aimed to investigate the antiproliferative and antimigratory effects of PVE on TC cell lines both in vitro and in vivo. First, the TPC-1 and SW579 human TC cell lines were screened by MTT assay for their high level of sensitivity to PVE. Then, the results of cell growth curve and colony formation assay and cell cycle analyses, wound healing, and migration assays demonstrated that PVE inhibited the proliferation and migration of TPC-1 and SW579 cells. Moreover, the antitumour effect of PVE was verified in a subcutaneous xenotransplanted tumour model. Next, MKI67, PCNA, CTNNB1, and CDH1 were screened by qRT-PCR for their significantly differential expression levels in xenograft tissue with and without PVE treatment, and expression of MKI67, PCNA, and CDH1 was verified by Western blot. Finally, an integrated bioinformatics analysis containing protein-protein interaction network, KEGG pathway, and GO analysis was conducted to explore more potential antitumour mechanisms of PVE. In summary, PVE could inhibit the proliferation and migration of TC cells both in vitro and in vivo, which may have been achieved by modulation of the expression of MKI67, PCNA, and CDH1. These data suggest that PVE has the potential to be developed into a new anticancer drug for the treatment of TC.

7.
ChemSusChem ; 11(4): 743-752, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29240294

RESUMO

RuPx nanoparticles (NPs) encapsulated in uniform N,P-codoped hollow carbon nanospheres (RuPx @NPC) have been synthesized through a facile route in which aniline-pyrrole copolymer nanospheres are used to disperse Ru ions followed by a gas phosphorization process. The as-prepared RuPx @NPC exhibits a uniform core-shell hollow nanospherical structure with RuPx NPs as the core and N,P-codoped carbon (NPC) as the shell. This strategy integrates many advantages of hollow nanostructures, which provide a conductive substrate and the doping of a nonmetal element. At high temperatures, the obtained thin NPC shell can not only protect the highly active phase of RuPx NPs from aggregation and corrosion in the electrolyte but also allows variation in the electronic structures to improve the charge-transfer rate greatly by N,P codoping. The optimized RuPx @NPC sample at 900 °C exhibits a Pt-like performance for the hydrogen evolution reaction (HER) and long-term durability in acidic, alkaline, and neutral solutions. The reaction requires a small overpotential of only 51, 74, and 110 mV at 10 mA cm-2 in 0.5 m H2 SO4 , 1.0 m KOH, and 1.0 m phosphate-buffered saline, respectively. This work provides a new way to design unique phosphide-doped carbon heterostructures through an inorganic-organic hybrid method as excellent electrocatalysts for HER.


Assuntos
Hidrogênio/química , Nanosferas/química , Compostos de Rutênio/química , Carbono , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Temperatura Alta , Nitrogênio , Fósforo/química
8.
PLoS One ; 12(1): e0169731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28103327

RESUMO

Hemostat has been a crucial focus since human body is unable to control massive blood loss, and collagen proves to be an effective hemostat in previous studies. In this study, collagen was isolated from the mesoglea of jellyfish Rhopilema esculentum Kishinouye and its hemostatic property was studied. The yields of acid-soluble collagen (ASC) and pepsin-soluble (PSC) were 0.12% and 0.28% respectively. The SDS-PAGE patterns indicated that the collagen extracted from jellyfish mesoglea was type I collagen. The lyophilized jellyfish collagen sponges were cross-linked with EDC and interconnected networks in the sponges were revealed by scanning electron microscope (SEM). Collagen sponges exhibited higher water absorption rates than medical gauze and EDC/NHS cross-linking method could improve the stability of the collagen sponges. Compared with medical gauze groups, the blood clotting indexes (BCIs) of collagen sponges were significantly decreased (P < 0.05) and the concentration of collagen also had an influence on the hemostatic property (P < 0.05). Collagen sponges had an improved hemostatic ability compared to the gauze control in tail amputation rat models. Hemostatic mechanism studies showed that hemocytes and platelets could adhere and aggregate on the surface of collagen sponge. All properties make jellyfish collagen sponge to be a suitable candidate used as hemostatic material and for wound healing applications.


Assuntos
Colágeno Tipo I/isolamento & purificação , Hemostáticos/isolamento & purificação , Cifozoários/química , Aminoácidos/análise , Animais , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular , Colágeno Tipo I/farmacologia , Colágeno Tipo I/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Fibroblastos/efeitos dos fármacos , Hemostáticos/farmacologia , Microscopia Eletrônica de Varredura , Adesividade Plaquetária/efeitos dos fármacos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Cauda/cirurgia
9.
Artigo em Inglês | MEDLINE | ID: mdl-21806504

RESUMO

We report the application of Vitamin D3 (VD(3)) in nanoparticles of oleoyl alginate ester (OAE)(OAE-VD(3)). The internalization of fluorescent OAE-VD(3) by Caco-2 cells was visualized by confocal laser scanning microscopy. In vivo pharmacokinetic studies showed that incorporation into OAE nanoparticles resulted in increased absorption of VD(3). Its application in the treatment of rickets was assayed using a model of nutritionally induced vitamin D-deficiency rickets. The results showed that the encapsulated VD(3) had better efficacy than that of the free drug in vivo. Our studies provide evidence that OAE nanoparticles are valuable as nutraceutical delivery vehicles to enhance the absorption of VD(3).


Assuntos
Alginatos/química , Colecalciferol , Suplementos Nutricionais , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Administração Oral , Animais , Transporte Biológico , Densidade Óssea/efeitos dos fármacos , Células CACO-2 , Cápsulas , Colecalciferol/administração & dosagem , Colecalciferol/farmacocinética , Colecalciferol/farmacologia , Portadores de Fármacos/metabolismo , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA