Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 823: 153797, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150673

RESUMO

Phytoplankton carbon (C) and nitrogen (N) stoichiometric homeostasis plays an important role in aquatic ecosystems. Their C:N ratio is a result of cellular metabolic balance, and the relevant regulatory strategy for its plasticity is still unclear. Therefore, a field survey of seven reservoirs in Tianjin, North China, was conducted to understand variations in phytoplankton C:N ratios, and a laboratory culture of Chlamydomonas reinhardtii was performed to understand the relevant regulation strategy for cellular C-N stoichiometric homeostasis under different C and N availability by using transcriptome sequencing and Nano SIMS and C stable isotope analyses. The results indicated that CO2 limitation had no significant effect on the phytoplankton C:N ratio in either scene, whereas limitation of dissolved inorganic N induced a 35% higher ratio in the field and a 138% higher ratio in the laboratory. Under CO2 limitation, algal CO2-concentrating mechanisms were operated to ensure a C supply, and coupled C-N molecular regulation remained the cellular C:N ratio stable. Under nitrate limitation, differentially expressed gene-regulated intensities increase enormously, and their increasing proportion was comparable to that of the algal C:N ratio; cellular metabolism was reorganized to form a "subhealthy" C-N stoichiometric state with high C:N ratios. In addition, the N transport system had a specific role under CO2 and nitrate limitations. Our study implies that algal stoichiometric homeostasis depends on the involved limitation element and will help to deepen the understanding of C-N stoichiometric homeostasis in freshwater phytoplankton.


Assuntos
Nitrogênio , Fitoplâncton , Carbono/metabolismo , Ecossistema , Homeostase , Lagos , Nitrogênio/metabolismo , Nutrientes , Fósforo/metabolismo , Fitoplâncton/fisiologia
2.
Huan Jing Ke Xue ; 27(11): 2273-8, 2006 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-17326439

RESUMO

Thirteen weathering profiles of typical rocks such as limestone, dolomitic limestone, dolomite, sillcalite, black shale and purple sandrock from Wujiang catchments were selected for discussing enrichment and release behavior of uranium (U) during rock weathering, and studying its impact on riverine U distribution in the catchments during weathering of these rocks with methods of correlation analysis and mass balance calculation. The purpose of this study is to improve our understanding on biogechemical cycling of U and set a basis for catchment protection against U pollution. The results show that the enrichment extent of U in soils from the Wujiang catchments is usually higher than that of upper continental crust (UCC), China soil (CS) and world soil (WS). The ability of enrichment and release of U is partly controlled by content of U in bedrocks, contents and adsorption ability of clay minerals and Fe-oxides/hydroxides in weathering profiles. Our study also reveals that release of U mainly from weathering of limestone and partly from weathering of dolomite and clastic rocks exerts an important control on riverine U distribution.


Assuntos
Sedimentos Geológicos/química , Poluentes Radioativos do Solo/análise , Urânio/análise , Poluentes Radioativos da Água/análise , China , Poluição Ambiental/análise , Poluição Ambiental/prevenção & controle , Água Doce/análise , Geografia , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA