Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522760

RESUMO

The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.


Assuntos
Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Chin Med ; 18(1): 132, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833746

RESUMO

Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation. It can be triggered by various mechanisms, including the glutathione peroxidase 4 (GPX4)-glutathione (GSH) axis, iron metabolism, lipid metabolism, the GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, and the ferroptosis suppressor protein 1 (FSP1)-coenzyme Q10 axis. The redox balance is disrupted when ferroptosis occurs in cells, which is fatal to cancer cells. Additionally, some tumor-associated genes are involved in ferroptosis. Hence, targeting ferroptosis might be an effective strategy for treating cancer. Several small-molecule compounds exhibit anti-tumor effects through ferroptosis, including sorafenib and altretamine, which induce ferroptosis by inhibiting System-Xc and GPX4 respectively, but many problems, such as poor druggability, still exist. Some studies have shown that many traditional Chinese medicine (TCM) induce ferroptosis by inhibiting GPX4, solute carrier family 7 member 11 (SLC7A11), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), or by increasing the expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin (TF), and transferrin receptor 1 (TFR1). These changes can lead to the lysosomal degradation of ferritin, accumulation of iron, lipid peroxidation and the production of reactive oxygen species (ROS), which in turn can promote anti-tumor activities or synergistic effects with chemotherapeutic drugs. In this study, we elucidated the underlying mechanisms of ferroptosis, and the anti-tumor pharmacology of TCM targeting ferroptosis including prescriptions, Chinese herbs, extracts, and natural compounds. Our findings might act as valuable reference for research on anti-tumor drugs targeting ferroptosis, especially those drugs developed from TCM.

3.
Am J Chin Med ; 51(7): 1627-1651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638827

RESUMO

The tumor microenvironment (TME) plays an important role in the development of tumors. Immunoregulatory cells and cytokines facilitate cancer cells to avoid immune surveillance. Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 inhibits immune function and enables cancer cells to avoid clearance by the immune system. Thus, minimizing tumor immunosuppression could be an important strategy for cancer therapy. Currently, many immune checkpoint-targeted drugs, such as PD-1/PD-L1 inhibitors, have been approved for marketing and have shown unique advantages in the clinical treatment of cancers. The concept of "strengthening resistance to eliminate pathogenic factors" in traditional Chinese medicine (TCM) is consistent with the immunotherapy of cancer. According to previous studies, the role of TCM in tumor immunotherapy is mainly associated with the positive regulation of natural killer cells, CD8/CD4 T cells, dendritic cells, M2 macrophages, interleukin-2, tumor necrosis factor-[Formula: see text], and IFN-[Formula: see text], as well as with the negative regulation of Tregs, myeloid-derived suppressor cells, cancer-associated fibroblasts, PD-1/PD-L1, transforming growth factor-[Formula: see text], and tumor necrosis factor-[Formula: see text]. This paper summarizes the current research on the effect of TCM targeting the TME, and further introduces the research progress on studying the effects of TCM on immune checkpoints. Modern pharmacological studies have demonstrated that TCM can directly or indirectly affect the TME by inhibiting the overexpression of immune checkpoint molecules and enhancing the efficacy of tumor immunotherapy. TCM with immunomodulatory stimulation could be the key factor to achieve benefits from immunotherapy for patients with non-inflammatory, or "cold", tumors.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/farmacologia , Medicina Tradicional Chinesa , Proteínas de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1 , Neoplasias/patologia , Imunoterapia , Fatores de Necrose Tumoral/farmacologia , Microambiente Tumoral
4.
Phytomedicine ; 116: 154895, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37229890

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer-associated mortality worldwide. Myosin-9's role in HCC and the anti-HCC effect of the drugs targeting Myosin-9 remain poorly understood so far. Candidate antitumor agents obtained from natural products have attracted worldwide attention. Usenamine A is a novel product, which was first extracted in our laboratory from the lichen Usnea longissima. According to published reports, usenamine A exhibits good antitumor activity, while the mechanisms underlying its antitumor effects remain to be elucidated. PURPOSE: The present study investigated the anti-hepatoma effect of usenamine A and the underlying molecular mechanisms, along with evaluating the therapeutic potential of targeting Myosin-9 in HCC. METHODS: The CCK-8, Hoechst staining, and FACS assays were conducted in the present study to investigate how usenamine A affected the growth and apoptosis of human hepatoma cells. Moreover, TEM, acridine orange staining, and immunofluorescence assay were performed to explore the induction of autophagy by usenamine A in human hepatoma cells. The usenamine A-mediated regulation of protein expression in human hepatoma cells was analyzed using immunoblotting. MS analysis, SPR assay, CETSA, and molecular modeling were performed to identify the direct target of usenamine A. Immunofluorescence assay and co-immunoprecipitation assay were conducted to determine whether usenamine A affected the interaction between Myosin-9 and the actin present in human hepatoma cells. In addition, the anti-hepatoma effect of usenamine A was investigated in vivo using a xenograft tumor model and the IHC analysis. RESULTS: The present study initially revealed that usenamine A could suppress the proliferation of HepG2 and SK-HEP-1 cells (hepatoma cell lines). Furthermore, usenamine A induced cell apoptosis via the activation of caspase-3. In addition, usenamine A enhanced autophagy. Moreover, usenamine A administration could dramatically suppress the carcinogenic ability of HepG2 cells, as evidenced by the nude mouse xenograft tumor model. Importantly, it was initially revealed that Myosin-9 was a direct target of usenamine A. Usenamine A could block cytoskeleton remodeling through the disruption of the interaction between Myosin-9 and actin. Myosin-9 participated in suppressing proliferation while inducing apoptosis and autophagy in response to treatment with usenamine A. In addition, Myosin-9 was revealed as a potential oncogene in HCC. CONCLUSIONS: Usenamine A was initially revealed to suppress human hepatoma cells growth by interfering with the Myosin-9/actin-dependent cytoskeleton remodeling through the direct targeting of Myosin-9. Myosin-9 is, therefore, a promising candidate target for HCC treatment, while usenamine A may be utilized as a possible anti-HCC therapeutic, particularly in the treatment of HCC with aberrant Myosin-9.


Assuntos
Morte Celular Autofágica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Actinas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , Apoptose , Células Hep G2 , Proteínas do Citoesqueleto/farmacologia , Proteínas do Citoesqueleto/uso terapêutico , Citoesqueleto/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Phytother Res ; 37(2): 689-701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245270

RESUMO

Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.


Assuntos
Dracaena , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Proteína Beclina-1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sirolimo , Regulação para Baixo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Dracaena/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
6.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6457-6465, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604892

RESUMO

The purpose of this study was to investigate the effect of Huaier extract supernatant(HES) on the proliferation, apoptosis, autophagy, and migration of human gastric cancer HGC-27 and MGC-803 cells and its molecular mechanisms. The main components in HES were preliminarily analyzed by high-performance liquid chromatography-mass spectrometry(HPLC-MS). Methyl thiazolyl tetrazolium(MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine(EdU) staining assay were used to explore the effect of HES on the proliferation of human gastric cancer HGC-27 and MGC-803 cells. Hoechst staining and flow cytometry assay were used to determine the effect of HES on apoptosis of human gastric cancer HGC-27 and MGC-803 cells. Acridine orange staining and cell scratch assay were used to determine the effect of HES on autophagy and migration of human gastric cancer HGC-27 and MGC-803 cells, respectively. Western blot was used to investigate the regulatory effect of HES on the expression levels of proteins related to apoptosis, epithelial-mesenchymal transition(EMT), and signaling pathways in human gastric cancer HGC-27 and MGC-803 cells. The results showed that HES mainly contained some components with high polarities. HES significantly reduced the cell viability of human gastric cancer cells in a dose-and time-dependent manner. The IC_(50 )values after 48 h of HES treatment in human gastric cancer HGC-27 and MGC-803 cells were 7.56 and 10.77 g·L~(-1), respectively. Meanwhile, HES inhibited the colony-forming ability and short-term proliferation of human gastric cancer cells. The apoptosis rates of HGC-27 and MGC-803 cells treated with 8 g·L~(-1) HES for 72 h were 62.13%±8.92% and 54.50%±3.26%, respectively. HES also promoted autophagy in human gastric cancer cells and impaired their migration ability in vitro. Moreover, HES up-regulated the cleavage of the apoptosis marker poly ADP-ribose polymerase(PARP) and the protein expression level of the epithelial cell marker E-cadherin, and down-regulated the protein levels of phosphorylated-mammalian target of rapamycin(p-mTOR), phosphorylated-S6(p-S6), and phosphorylated-extracellular signal-regulated kinase(p-ERK) in human gastric cancer cells. Therefore, HES is one of the effective anti-tumor components of Huaier, which inhibits the proliferation and migration of human gastric cancer cells, and induces apoptosis and autophagy. Moreover, the mTOR signal and ERK signal may be involved in the anti-gastric cancer effect of HES. This study provides novel references for the in-depth research and clinical application of Huaier. It is also of great significance to promote the scientific development and utilization of Huaier.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Gástricas/patologia , Apoptose , Serina-Treonina Quinases TOR/metabolismo
7.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1370-6, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22919851

RESUMO

The 59 1st-3rd order tributaries in the middle reach of Qiantang River are negatively affected by different intensities of urbanization. In April 2010, an investigation was conducted on the water bodies' physical and chemical properties and macrobenthos communities of the tributaries, with the relationships between the tributaries' water quality and biological communities and the percentage of ground surface impervious area (PIA), an indicator of urbanization intensity. The Spearman correlation analysis showed that the water bodies' NH(4+)-N, PO4(3-)-P, TP, COD(Mn), conductivity, width, depth, and fine sand/silt ratio were positively correlated with PIA, and negatively correlated with forest land area. The fitted nonlinear regression equations revealed that all the test macro-benthic invertebrate's parameters had significant relationships with PIA, of which, the total number of taxa, Shannon diversity index, richness index, EPT (%), predators (%), shredders (%), filterers (%) and scrapers (%) were negatively correlated to PIA but positively correlated to forest land area, and the BI, collectors (%), tolerance taxa (%) and oligochaeta (%) were positively correlated to the PIA. Our study indicated that under the impact of urbanization, these tributaries presented the common features of degradation, i. e., high concentrations of nitrogen and phosphorus, degradation of physical habitat, disappearance of pollution-sensitive macro-benthic invertebrate species, and dramatic increase of pollution-tolerant species individuals.


Assuntos
Invertebrados/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Urbanização , Poluentes Químicos da Água/análise , Qualidade da Água , Animais , China , Monitoramento Ambiental/métodos , Invertebrados/classificação , Dinâmica Populacional , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA