Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103317

RESUMO

BACKGROUND: Hypercholesterolemia is widely implicated in the etiology of coronary heart disease, stroke, and dementia. Evidence suggests that chlorogenic acid (CA) reduces the risk of cardiovascular disease. PURPOSE: The current study aims to explore the underlying molecular mechanism of CA in lowering cholesterol based on pregnane X receptor (PXR) and sterol regulatory element-binding protein 2 (SREBP2) regulatory pathways and their interactions with heat shock protein 90 (HSP90). METHODS: A hypercholesterolemic mouse model, HepG2 and Caco2 cell models, metabolomics analysis, and co-immunoprecipitation (COIP) were used to study the mechanism of CA lowering cholesterol. RESULTS: Treatment of the hypercholesterolemic mice with CA for 12 weeks significantly reduced body weight, blood lipid, hepatic lipid accumulation, and increased lipid excretion. The nuclear aggregation of PXR and SREBP2 was inhibited simultaneously. In addition, the expression of downstream target genes, including Niemann-pick C1-like 1 (NPC1L1) and 3­hydroxy-3-methylglutaryl-CoA reductase (HMGCR), was downregulated after CA administration. Furthermore, in HepG2 and Caco2 cell models, CA reduced intracellular cholesterol levels by inhibiting the nuclear translocation of PXR and SREBP2 and the expression of NPC1L1 and HMGCR. SREBP2 interacts with PXR through HSP90, and CA reduces the binding stability of SREBP2 and HSP90 and enhances the binding of PXR and HSP90, thus reducing the nuclear accumulation of SREBP2 and PXR simultaneously. Moreover, CA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and its binding to SREBP2. This was not conducive to the binding of HSP90 and SREBP2 but enhanced the binding of HSP90 and PXR, thereby inhibiting the nuclear translocation of SREBP2 and PXR and reducing intracellular cholesterol levels. However, no noticeable direct binding between AMPK and PXR was observed. CONCLUSION: CA downregulates NPC1L1 and HMGCR expression by acting on the AMPK/SREBP2 direct pathway and the AMPK/SREBP2/HSP90/PXR indirect pathway, thus retaining cholesterol homeostasis.


Assuntos
Ácido Clorogênico , Hipercolesterolemia , Humanos , Animais , Camundongos , Ácido Clorogênico/farmacologia , Receptor de Pregnano X/metabolismo , Oxirredutases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células CACO-2 , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Colesterol/metabolismo , Homeostase , Transdução de Sinais , Proteínas de Membrana Transportadoras/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo
2.
J Ethnopharmacol ; 310: 116398, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36948264

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cytochrome P3A4 (CYP3A4) is a crucial drug-metabolizing enzyme, and its expression is regulated by the pregnane X receptor (PXR), constitutive androstane receptor (CAR), steroid receptor coactivator 1 (SRC-1), and acetyltransferase P300. Panaxytriol is a naturally derived active substance extracted from the roots of Panax ginseng C. A. Mey. which is widely used clinically. Our previous studies have shown that panaxytriol induces CYP3A4 expression through PXR activation, which is antagonized by high CAR expression. However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of panaxytriol in inducing CYP3A4 expression via interactions between nuclear regulators and DNA response elements. MATERIALS AND METHODS: Immunoprecipitation technique was used to assess the binding levels of PXR and CAR with the coactivators SRC-1 and P300 in HepG2 and Huh-7 cells. Furthermore, chromatin immunoprecipitation assay was used to investigate the PXR and CAR interaction with the CYP3A4 promoter response element ER-6/DR-3. RESULTS: The binding of PXR to SRC-1, P300, and the response elements ER-6 and DR-3 was improved with an increase in panaxytriol concentration (10-80 µM), and the binding affinity was further enhanced upon CAR silencing. The binding of CAR to SRC-1 and the response elements ER-6 and DR-3 was significantly higher at 80 µM panaxytriol, whereas no significant binding was observed between CAR and P300. CONCLUSION: Panaxytriol promoted the recruitment of PXR to SRC-1 and P300, binding to ER-6 and DR-3, and upregulating CYP3A4 expression. Furthermore, an interactive dialogue regulatory mechanism between PXR and CAR was observed.


Assuntos
Receptores de Esteroides , Humanos , Receptores de Esteroides/genética , Receptores Citoplasmáticos e Nucleares/genética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Elementos de Resposta , DNA
3.
J Ethnopharmacol ; 308: 116278, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36813246

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a well-known Chinese herbal compound preparation, which is utilized extensively for the treatment of myocardial ischemia, arrhythmia and other life-threatening conditions. Our previous researches have shown that some of the active ingredients in SMF can interact with organic anion transport polypeptide 1B1 (OATP1B1), breast cancer resistance protein (BCRP) and organic anion transporter 1 (OAT1), etc. Organic cation transporter 2 (OCT2) is a highly expressed uptake transporter in the kidney, and its interaction with the major active components in SMF remains unclear. AIM OF THE STUDY: We purposed to explore OCT2-mediated interactions and compatibility mechanisms of the main active compounds in SMF. MATERIALS AND METHODS: Fifteen active ingredients of SMF, including ginsenoside Rb1, Rd, Re, Rg1, Rf, Ro and Rc, methylophiopogonanone A and B, ophiopogonin D and D', schizandrin A and B, schizandrol A and B, were selected to investigate OCT2-mediated interactions in Madin-Darby cacine kidney (MDCK) cells stably expressing OCT2. RESULTS: Among the above 15 main active components, only ginsenosides Rd, Re and schizandrin B could significantly inhibit the uptake of 4-(4-(dimethylamino)styryl)-N-methyl pyridiniumiodide (ASP+), a classical substrate of OCT2. Ginsenoside Rb1 and methylophiopogonanone A can be transported by MDCK-OCT2 cells, and their uptake was significantly reduced when OCT2 inhibitor decynium-22 was added. Ginsenoside Rd could remarkably reduce the uptake of methylophiopogonanone A and ginsenoside Rb1 by OCT2, ginsenoside Re only decreased the uptake of ginsenoside Rb1, while schizandrin B had no effect on the uptake of both. CONCLUSIONS: OCT2 mediates the interaction of the major active components in SMF. Ginsenosides Rd, Re and schizandrin B are the potential inhibitors of OCT2, while ginsenosides Rb1 and methylophiopogonanone A are the potential substrates of OCT2. There is an OCT2-mediated compatibility mechanism among these active ingredients of SMF.


Assuntos
Ginsenosídeos , Animais , Cães , Ginsenosídeos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportador 2 de Cátion Orgânico , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/metabolismo
4.
Phytomedicine ; 108: 154529, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343550

RESUMO

BACKGROUND: Previous studies have shown that the anti-cholestatic effect of oleanolic acid (OA) is associated with FXR and NRF2. However, how the two signaling pathways cooperate to regulate the anti-cholestatic effect of OA remains unclear. PURPOSE: This study aimed to further demonstrate the effect of OA on alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury and the interaction mechanism between NRF2 and FXR signaling pathways in maintaining bile acid homeostasis. METHODS: Gene knockout animals and cell models, metabolomics analysis, and co-immunoprecipitation were used to investigate the mechanism of OA against cholestatic liver injury. RESULTS: The effect of OA against ANIT-induced liver injury in rats was dramatically reduced after Nrf2 gene knockdown. With the silencing of Fxr, the hepatoprotective effect of OA was weakened, but it still effectively alleviated cholestatic liver injury in rats. In L02 cells, OA can up-regulate the levels of NRF2, FXR, BSEP and UGT1A1, and reduce the expression of CYP7A1. Silencing of NRF2 or FXR significantly attenuated the protective effect of OA on ANIT-induced L02 cell injury and its regulation on downstream target genes, and the influence of NRF2 gene silencing on OA appeared to be greater. The NRF2 activator sulforaphane, and the FXR activator GW4064 both remarkably promoted NRF2 binding to P300 and FXR to RXRα, but reduced ß-catenin binding to P300 and ß-catenin binding to FXR. CONCLUSION: The effect of OA on cholestatic liver injury is closely related to the simultaneous activation of NRF2 and FXR dual signaling pathways, in which NRF2 signaling pathway plays a more important role. The dual signaling pathways of NRF2 and FXR cooperatively regulate bile acid metabolic homeostasis through the interaction mechanism with ß-catenin/P300.


Assuntos
Colestase , Ácido Oleanólico , Animais , Ratos , beta Catenina/metabolismo , Ácidos e Sais Biliares/metabolismo , Colestase/tratamento farmacológico , Colestase/induzido quimicamente , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
5.
Phytother Res ; 37(1): 211-230, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36086852

RESUMO

Resveratrol (Resv) has antitumorigenic and antimetastatic activities; however, the molecular mechanisms underlying the inhibitory effects of Resv on the invasion and metastasis of breast cancer cells are still a subject of debate. In our study, we demonstrated that Resv inhibited tumor cell proliferation and tumor growth. It also suppressed invasion and pulmonary metastasis of breast cancer by reversing the transforming growth factor beta 1 (TGF-ß1)-mediated EMT process. Meanwhile, the anticarcinogenic effects of Resv were abolished by the autophagy blocker 3-methyladenine (3-MA) or Beclin 1 small interfering RNA. Moreover, Resv upregulated autophagy-related genes and protein levels and induced the formation of autophagosomes in 4T1 breast cancer cells and xenograft mice, suggesting that autophagy was involved in the anticarcinogenic activities of Resv in both models. In addition, Resv-induced autophagy by increasing the expression of SIRT3 and phosphorylated AMPK. SIRT3 knockdown reduced AMPK phosphorylation and autophagy-related proteins levels, and suppressed the anticancer effects of Resv, demonstrating that the inhibitory effects of Resv on tumor progression were mediated via the SIRT3/AMPK/autophagy pathway. Taken together, our study provided novel insight into the anticancer effects of Resv and revealed that targeting the SIRT3/AMPK/autophagy pathway can serve as a new therapeutic target against breast cancer.


Assuntos
Neoplasias , Sirtuína 3 , Humanos , Animais , Camundongos , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP , Fator de Crescimento Transformador beta1/metabolismo , Autofagia , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular
6.
J Ethnopharmacol ; 296: 115515, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777609

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai formula (SMF) is a classical traditional Chinese medicine prescription, which is widely used in the treatment of cardiovascular and cerebrovascular diseases. Our previous studies have demonstrated that some components in SMF can interact with each other through breast cancer resistance protein, sodium taurocholate co-transporting polypeptide, organic anion transporting polypeptide 1B1 and 1B3. Organic anion transporter 1 (OAT1) is highly expressed in kidney, mediating the elimination of many endogenous and exogenous substances. However, the interaction between the main active components in SMF and OAT1 is not clear. AIM OF THE STUDY: This study aimed to investigate the interactions of the major bioactive components in SMF mediated by OAT1. MATERIALS AND METHODS: Four main fractions, namely, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), fructus schisandrae total lignans (STL), and 12 active components, namely, ginsenoside Rg1, Re, Rd and Rb1, ophiopogonin D and D', methylophiopogonanone A and B, schizandrol A and B, schizandrin A and B, were selected to explore the interactions of SMF with OAT1 using cell and rat models. RESULTS: The above four main fractions in SMF all exhibited inhibitory effects on the uptake of 6-carboxyfluorescein (6-CF), a classic substrate of OAT1. Among the 12 main effective components, only ginsenoside Re, Rd, and methylophiopogonanone A showed inhibition of 6-CF uptake. Additionally, we found that schizandrin B was transported by HEK293-OAT1 cells, and schizandrin B uptake was markedly inhibited by GTS, OTS, OTF, ginsenoside Re, Rd, and methylophiopogonanone A. In rats, ginsenoside Re, Rd, and methylophiopogonanone A jointly increased the AUC(0-t), AUC(0-∞), and Cmax of schizandrin B, but they decreased its clearance in plasma and excretion in urine. CONCLUSIONS: Ginsenoside Re, Rd, and methylophiopogonanone A were the potential inhibitors of OAT1, and may interact with some drugs serving as OAT1 substrates clinically. Schizandrin B was a potential OAT1 substrate, and its OAT1-mediated transport was inhibited by ginsenoside Re, Rd, and methylophiopogonanone A. OAT1-mediated interactions of the main active components in SMF can be regarded as one of the important compatibility mechanisms of traditional Chinese medicine preparations.


Assuntos
Medicamentos de Ervas Chinesas , Ophiopogon , Transportadores de Ânions Orgânicos , Panax , Saponinas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Células HEK293 , Humanos , Proteínas de Neoplasias , Panax/química , Ratos
7.
Phytomedicine ; 102: 154173, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35605478

RESUMO

BACKGROUND: Cholestasis is a clinical syndrome with high incidence and few effective treatments. Oleanolic acid (OA) is a triterpenoid compound with anti-cholestatic effects. Studies using bile duct ligation or lithocholic acid modeling have shown that the alleviating effect of OA on cholerosis is related to the regulation of nuclear factor erythroid 2 related factor (Nrf2) or farnesoid X receptor (Fxr). PURPOSE: This study aims to investigate the underlying mechanism of OA against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury based on Nrf2 and Fxr dual signaling pathways. METHODS: The ANIT-induced rats model was used with or without OA treatment. Serum biochemical indexes, liver histopathological changes and glutathione level were examined. Bile acids (BAs) targeted metabolomics based on UHPLC-MS/MS were performed. siRNA, RT-qPCR and western blot analysis were used to prove the role of Fxr and Nrf2 pathway in OA's anti-cholestatic liver injury in vivo and in vitro. RESULTS: OA significantly alleviated ANIT-induced liver injury in rats, reduced primary bile acids, accelerated metabolism of BAs and reduced the intrahepatic accumulation of BAs. The expressions of bile salt export pump (Bsep), Na+-taurocholic cotransport polypeptide (Ntcp), UDP-glucuronyl transferase 1a1 (Ugt1a1) and Fxr in rat liver were markedly up-regulated, the activation of Nrf2 was promoted, and the expression of cholesterol 7α-hydroxylase (Cyp7a1) was decreased after OA treatment. Moreover, Fxr or Nrf2 silencing attenuated the regulation of OA on BAs homeostasis related transporters and enzymes in rat primary hepatocytes. CONCLUSION: OA may regulate BAs-related transporters and metabolic enzymes by activating Fxr and Nrf2 pathways, thus alleviating the cholestatic liver injury induced by ANIT.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Ácido Oleanólico , Animais , Ratos , 1-Naftilisotiocianato/toxicidade , Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Homeostase , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Espectrometria de Massas em Tandem , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
8.
Phytomedicine ; 101: 154097, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35417848

RESUMO

BACKGROUND: Cytochrome P450 3A4 (CYP3A4) is one of the most important drug-metabolizing enzymes in the human body, mainly existing in the liver, small intestine, and kidney. Panaxytriol is one of the key active components in red ginseng and Shenmai injection. Our previous study demonstrated that panaxytriol regulates CYP3A4 expression mainly by activating pregnancy X receptor (PXR). At a high concentration of panaxytriol (80 µM), the constitutive androstane receptor (CAR) is also involved in the upregulation of CYP3A4. PURPOSE: This study investigated how the cofactors heat shock protein 90 alpha (HSP90α) and retinoid X receptor alpha (RXRα) interact with PXR and CAR to participate in the regulation of CYP3A4 by panaxytriol from the perspective of the PXR and CAR interaction. METHODS: The mRNA and protein expressions of PXR, CAR, CYP3A4, RXRα, and HSP90α in HepG2 cells and Huh-7 cells were detected by quantitative PCR and western blot analysis, respectively. The binding levels of PXR and CAR to RXRα and HSP90α were determined by co-immunoprecipitation analysis. The nuclear translocation of PXR and RXRα into HepG2 cells and human (hCAR)-silenced HepG2 cells were measured by immunofluorescence. RESULTS: In HepG2 cells and Huh-7 cells, panaxytriol (10-80 µM) upregulated CYP3A4 expression in a concentration-dependent manner by decreasing PXR binding to HSP90α and increasing PXR binding to RXRα. When hCAR was silenced, panaxytriol further enhanced CYP3A4 expression by strengthening PXR binding to RXRα, but it had no significant effect on the binding level of PXR and HSP90α. Additionally, at the high concentration of 80 µM panaxytriol, CAR binding to HSP90α was weakened while binding to RXRα was enhanced. CONCLUSION: Panaxytriol can upregulate CYP3A4 expression by promoting PXR dissociation from HSP90α and enhancing PXR binding to RXRα in HepG2 cells and Huh-7 cells. At high concentrations of panaxytriol, CAR also participates in the induction of CYP3A4 through a similar mechanism. However, in general, CAR antagonizes PXR binding to RXRα, thereby attenuating the upregulation of CYP3A4 by panaxytriol.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Enedi-Inos , Álcoois Graxos , Hepatócitos , Humanos , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética
9.
Phytomedicine ; 92: 153726, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536821

RESUMO

BACKGROUND: Isomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway. METHODS: HepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays. RESULTS: PKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells. CONCLUSION: The activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.


Assuntos
Ácido Oleanólico , Glucuronosiltransferase , NF-kappa B/metabolismo , Ácido Oleanólico/farmacologia , Proteína Quinase C/metabolismo , Transdução de Sinais , Triterpenos , Regulação para Cima , Ácido Ursólico
10.
Biomed Pharmacother ; 133: 110939, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232930

RESUMO

Shengmai Formula (SMF) is one of the traditional Chinese medicine representative formulas and is widely used for the treatment of cardio- and cerebrovascular disease. Previous studies demonstrated that the major effective ingredients in SMF can interact with each other based on some uptake transporters. However, the role of the efflux transporter breast cancer resistance protein (BCRP) in these interactions involving SMF remains unclear. The purpose of this study was to investigate the interactions of the major active components of SMF with BCRP and the compatibility mechanism of these complex components in SMF based on BCRP. We selected 4 main fractions, including ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), and fructus schisandrae total lignans (STL), and 12 bioactive components, including ginsenosides Re, Rd, Rb1, and Rg1, ophiopogonins D and D', methylophiopogonanones A and B, schizandrins A and B, and schizandrols A and B to explore the interactions of SMF with BCRP in LLC-PK1 and LLC-PK1/BCRP cells and BCRP membrane vesicles. The results showed that ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A can be transported by BCRP into LLC-PK1/BCRP cells. Schisandrol B exhibited a markedly inhibitory effect on the transport function of BCRP and can significantly inhibit the uptake of methylophiopogonanone B and schizandrin A into LLC-PK1/BCRP cells. In "Inside-Out" BCRP membrane vesicles, BCRP mediated the transport of ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A, with Km values of 111.9 ±â€¯31.26 µM, 82.01 ±â€¯16.72 µM, 57.06 ±â€¯8.789 µM, and 37.19 ±â€¯6.512 µM, respectively. GTS, STL, ginsenosides Rd and Rb1, and schisandrol B were potent inhibitors of BCRP and showed different degrees of inhibition on the transport of ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A via BCRP. In conclusion, GTS, STL, ginsenosides Rd and Rb1, and schizandrol B are potential inhibitors of BCRP. Ginsenosides Re and Rg1, methylophiopogonanone B, and schizandrin A are potential substrates of BCRP, and their transport, which is mediated by BCRP, may be inhibited by potential inhibitors in SMF. There are potential interactions of these main effective components of SMF at the cellular and vesicular levels that are mediated by BCRP. The interplay of these bioactive components based on BCRP may be an important compatibility mechanism in SMF.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Vesículas Transportadoras/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/metabolismo , Transporte Biológico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Células LLC-PK1 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Suínos , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
11.
Phytomedicine ; 59: 152916, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978651

RESUMO

BACKGROUND: Shengmai Formula (SMF) is widely used to treat cardiovascular disease such as chronic heart disease, coronary atherosclerotic heart disease, viral myocarditis, and others. Our previous studies have shown that OATP1B1/1B3 mediates the interactions between ophiopogon D and ginsenoside Rb1/Rd, which are the major active components in SMF. The herb-drug interactions that involve sodium taurocholate co-transporting polypeptide (NTCP) have been drawing increasing amounts of attention. PURPOSE: The aim of the present study was to investigate the interactions of the major effective components in SMF mediated by NTCP. METHODS: By using NTCP-overexpressing HEK293T cells and liquid chromatograph-mass spectrometer (LC-MS) analytical methods, we investigated the impact of the four main effective fractions and the 12 main effective components in SMF on NTCP-mediated sodium taurocholate (TCNa) uptake. The interactions of these effective components in SMF mediated by NTCP were further studied. RESULTS: The main effective fractions, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), and fructus schisandrae total lignans (STL), all exhibited a certain inhibitory effect on the uptake of TCNa. Among the 12 main effective components, only ginsenoside Rg1, ophiopogon D', and schizandrin A showed inhibition of TCNa uptake, with IC50 values of 50.49 ± 4.24 µM, 6.71 ± 0.70 µM, and 45.80 ± 3.10 µM, respectively. Additionally, we found that ginsenoside Re and schizandrin B could be transported by NTCP-overexpressing HEK293T cells, and that the uptake of ginsenoside Re was significantly inhibited by OTS, OTF, STL, ginsenoside Rg1, ophiopogon D', and schizandrin A. The uptake of schizandrin B was significantly inhibited by GTS, OTS, OTF, and ophiopogon D'. CONCLUSION: Ginsenoside Rg1, ophiopogon D', and schizandrin A are potential inhibitors of NTCP and may interact with clinical drugs mediated by NTCP. Ginsenoside Re and schizandrin B are also potential substrates of NTCP, and their uptake mediated by NTCP was inhibited by the other components in SMF. The interaction of complex components based on NTCP may be one of the important compatibility mechanisms in SMF.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Cromatografia Líquida , Combinação de Medicamentos , Células HEK293 , Humanos , Espectrometria de Massas
12.
Biochem Biophys Res Commun ; 478(2): 710-5, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498029

RESUMO

Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Asclepias/química , Cardenolídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/genética , Proteína Quinase CDC2 , Cardenolídeos/isolamento & purificação , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Cisplatino/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
13.
Fitoterapia ; 91: 140-147, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24007984

RESUMO

Four new xanthones, 3,5,6,8-tetrahydroxyxanthone-1-C-ß-D-glucoside (1), 7-hydroxy-3,4,8-trimethoxyxanthone-1-O-(ß-D-glucoside) (2), 6-hydroxy-3,5-dimethoxyxanthone-1-O-(ß-D-glucoside) (3), 3,4,7,8-tetramethoxyxanthone-1-O-(ß-D-glucoside) (4), together with twenty-one known xanthones (5-25) were isolated from the ethanol aqueous extract of Swertia mussotii. Their structures were elucidated via spectroscopic analyses. Oxygen radical absorbance capacity of all the isolated xanthones was systematically evaluated by ORAC(FL) assay. Results disclose that all the tested xanthones display moderate to excellent antioxidant activity, where 1 is the most active compound and 13 is the least one. A preliminary structure-activity relationship is also discussed.


Assuntos
Antioxidantes/farmacologia , Glucosídeos/farmacologia , Extratos Vegetais/farmacologia , Swertia/química , Xantonas/farmacologia , Altitude , Antioxidantes/química , Antioxidantes/isolamento & purificação , Glucosídeos/química , Glucosídeos/isolamento & purificação , Estrutura Molecular , Oxirredução , Extratos Vegetais/química , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA