Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37089720

RESUMO

Background: CKD-MBD is a mineral and bone metabolism syndrome caused by chronic kidney disease. FGF23 is an important factor regulating phosphorus and is the main influencer in the CKD-MBD process. In this study, we observed the correlation among serum FGF23 and calcium, phosphorus and parathyroid hormone, and the correlation between FGF23 levels and cardiac structural changes in MHD patients. Methods: We examined serum FGF23 concentrations in 107 cases of MHD patients using the ELISA method, recorded demographic information and biochemical data, and analyzed the correlation between serum FGF23 levels and blood calcium and blood phosphorus and PTH levels. All patients were evaluated by cardiac color ultrasound, and we finally analyzed the association between the FGF23 level and cardiac structural changes. Results: In 107 cases of MHD patients, serum FGF23 levels were linearly associated with serum calcium (r = 0.27 P < 0.01) and parathyroid hormone levels (r = 0.25, P < 0.05). FGF 23 was negatively correlated with age (r = -0.44, P < 0.01).Serum FGF23 levels were correlated with right atrial hypertrophy in HD patients (P < 0.05). No correlation was found among FGF23, left ventricular hypertrophy/enlargement, and valve calcification stenosis (P > 0.05). Conclusion: Serum FGF23 showed a positive correlation among blood calcium levels and PTH levels in hemodialysis patients, and FGF23 levels can affect the incidence of right atrial hypertrophy in MHD patients.

2.
Phytomedicine ; 91: 153650, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332282

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is associated with renal interstitial injury and fibrosis. Our previous study showed that andrographolide protected against the progression of DN and high glucose (HG)-induced mesangial dysfunction. However, the protective effects of andrographolide on renal tubular epithelial cells have not been fully elucidated. PURPOSE: To determine the protective effects of andrographolide on renal tubular damage and explore the underlying mechanism. STUDY DESIGN: Human tubular epithelial cells (HK-2 cells) were treated with andrographolide (5 and 10 µM) under HG conditions. Diabetic mice were treated with andrographolide (i.p. 2 and 4 mg/kg, twice per week). METHODS: Western blotting, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence and flow cytometry were used to analyze the effects of andrographolide on renal tubular injury and fibrotic mechanisms in HK-2 cells. The protective effects of andrographolide against renal tubulointerstitial injury and fibrosis were investigated in diabetic mice fed a high-fat diet (HFD). Renal interstitial tissue was collected at sacrifice for immunohistochemistry, immunofluorescence analysis, RT-PCR and Western blotting to analyze the effects of andrographolide on renal tubular injury and fibrosis. RESULTS: In vitro assay results indicated that andrographolide (5 and 10 µM) effectively inhibited HG-induced apoptosis, epithelial-mesenchymal transition (EMT) and collagen deposition in HK-2 cells. Mechanistically, HG stimulated mitochondrial reactive oxygen species (mtROS)-mediated NOD-like receptor family and pyrin domain-containing protein 3 (NLRP3) inflammasome activation and EMT in tubular epithelial cells, and andrographolide (5 and 10 µM) inhibited these effects by ameliorating mitochondrial dysfunction. In vivo, treatment with andrographolide (2 and 4 mg/kg) inhibited renal tubular cell apoptosis, EMT and tubulointerstitial fibrosis, mitochondrial dysfunction and NLRP3 inflammasome activation in diabetic mice. CONCLUSION: Andrographolide (5 and 10 µM) prevents HG-induced renal tubular cell damage, and andrographolide (2 and 4 mg/kg) protects against the progression of diabetic tubular injury and fibrosis in mice by suppressing mitochondrial dysfunction and NLRP3 inflammasome activation.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Diterpenos/farmacologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Fibrose , Humanos , Inflamassomos , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA