Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 263: 115277, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499390

RESUMO

Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Esterco/análise , Genes Bacterianos , Antibacterianos/farmacologia , Quimiotaxia/genética , Selenito de Sódio/farmacologia , Galinhas/genética , Bactérias , Resistência Microbiana a Medicamentos/genética , Bacteroidetes , Firmicutes
2.
Int J Clin Exp Med ; 8(8): 14030-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550363

RESUMO

OBJECTIVE: Astragalus is a traditional Chinese medicine to improve the function of the body. The purpose of this study is to investigate the effect of astragalus on improvement of anti-fatigue capacity in mice under simulated plateau environment. METHODS: Male Kunming mice were randomly divided into the following groups: the control group, astragalus treatment groups in low dosage (LD) (1.0 g/kg·d), mid dosage (MD) (3.0 g/kg·d), and high dosage (HD) (30 g/kg·d). The control group were fed under normoxia environment, and hypoxic mice were fed at a stimulated elevation of 5000 meters. After continuous intragastric administration for 10 days, exhaustive swimming experiment was conducted in the anoxic environment. The swimming time, glucose and lactic acid concentration in blood, glycogen contents in liver, SOD and MDA were determined. RESULTS: Compared with the control group, the swimming time of each astragalus treated group was evidently prolonged (P < 0.05), and the area under the blood lactic acid curve was significantly decreased (P < 0.05). In the high and middle dose of astragalus group, liver glycogen was obviously increased. After exhausted swimming, glycogen contents in blood and SOD were significantly increased, while MDA was evidently reduced (P < 0.05). CONCLUSION: Astragalus can alleviate physical fatigue in mice under simulated plateau environment. It has an obvious anti-fatigue effect and it's worthy of further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA