Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Nutr ; 5(2): 185-190, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31193871

RESUMO

This study was conducted to investigate the effects of traditional Chinese medicine compounds (TCMC) on rumen fermentation, methane emission and populations of ruminal microbes using an in vitro gas production technique. Cablin patchouli herb (CPH), Atractylodes rhizome (AR), Amur Cork-tree (AC) and Cypsum were mixed with the weight ratios of 1:1:1:0.5 and 1:1:1:1 to make up TCMC1 and TCMC2, respectively. Both TCMC were added at level of 25 g/kg of substrate dry matter. In vitro gas production was recorded and methane concentration was determined at 12 and 24 h of incubation. After 24 h, the incubation was terminated and the inoculants were measured for pH, ammonia nitrogen, volatile fatty acids (VFA). Total deoxyribonucleic acid of ruminal microbes was extracted from the inocula, and populations were determined by a real-time quantitative polymerase chain reaction. Populations of total rumen methanogens, protozoa, total fungi, Ruminococcus albus, Fibrobacter succinogenes and Ruminococcus flavefaciens were expressed as a proportion of total rumen bacterial 16S ribosomal deoxyribonucleic acid. Compared with the control, the 2 TCMC decreased (P ≤ 0.05) total VFA concentration, acetate molar proportion, acetate to propionate ratio, gas and methane productions at 12 and 24 h, hydrogen (H) produced and consumed, and methanogens and total fungi populations, while the 2 TCMC increased (P ≤ 0.05) propionate molar proportion. Traditional Chinese medicine compound 1 also decreased (P ≤ 0.05) R. flavefaciens population. From the present study, it is inferred that there is an effect of the TCMC in suppressing methanogenesis, probably mediated via indirect mode by channeling H2 utilized for methanogenesis to synthesis of propionate and direct action against the rumen microbes involved in methane formation. In addition, the relative methane reduction potential (RMRP) of TCMC2 was superior to that of TCMC1.

2.
Chin J Integr Med ; 22(10): 752-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26666762

RESUMO

OBJECTIVE: To explore the apoptosis mechanism of Wenxia Changfu Formula (, WCF) in reversing drug resistance of lung cancer in vivo. METHODS: Thirty model mice were randomly assigned to three groups: control group, cisplatin (CDDP) group, and WCF group. A transplanted tumor model of lung adenocarcinoma was established in all groups. Mice in the WCF group received intragastric administration of WCF (0.2 mL/10 g body weight) everyday in addition to CDDP intraperitoneally (5 mg/kg body weight) twice a week. The mice in the CDDP group received CDDP intraperitoneally (5 mg/kg body weight) twice a week, while the control group received normal saline intraperitoneally (0.2 mL/10 g body weight) everyday. The weight of the nude mice and respective tumors, tumor volume and tumor-inhibiting rate were measured. Electron microscopy was used to observe the existence of apoptosis body. Apoptosis index (AI) was detected by TdT-mediated dUTP nick end labeling staining. The expression of Fas and FasL mRNA was investigated by reverse transcription polymerase chain reaction, while immunohistochemistry was applied to detect the protein expression of Fas and FasL, caspase-3 and caspase-activated DNase (CAD), respectively. RESULTS: Compared with CDDP group and control group, WCF could significantly reduce the tumor volume from the 19th day and alleviate the tumor weight (P <0.05), and the apoptosis body was found in tumor cells in the WCF group. WCF could also enhance the level of AI, up-regulate the expression of caspase apoptosis pathway related protein caspase-3 and CAD, as well as the expression of Fas, FasL mRNA and protein (P <0.05). CONCLUSION: WCF could improve the sensitivity of tumor cells to CDDP and reverse the drug resistance by inducing the apoptosis.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adenocarcinoma de Pulmão , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos Nus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carga Tumoral/efeitos dos fármacos , Receptor fas/metabolismo
3.
Chin J Integr Med ; 17(12): 908-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22139542

RESUMO

OBJECTIVE: To observe the effect of the combination of Wenxia Changfu Formula ([see text], WCF) with cisplatin (CDDP) on inhibiting non-small cell lung cancer (NSCLC) in vitro and In Vivo and explore its mechanism from its effect on cell cycle. METHODS: In vitro, WCF-containing serum was prepared and the rhubarb b1, emodin, and aconitine were detected qualitatively by high-performance liquid chromatogram (HPLC). A549 cell lines were treated with blank control (dimethyl sulfoxide), normal serum, normal serum with CDDP (1.25, 2.5, and 5.0 µg/mL, respectively), WCF-containing serum plus different doses of CDDP (1.25, 2.5, and 5.0 µg/mL, respectively). The inhibitory effect was detected by 3-(4,5)-dimethylthiazo(-zy1)-3,5-diphenylterazolium bromide (MTT). The cell cycle was detected by flow cytometry. The protein and mRNA expressions of cyclin D1, proliferating cell nuclear antigen (PCNA), retinoblastoma (Rb), and p16 were observed with immunofluorescence and RT-PCR, respectively. In Vivo, nude mice xenograft model was established and grouped into the control, CDDP, WCF, and combination groups. The combination's inhibition of tumor growth and influence on the weight, spleen, and thymus gland were observed. RESULTS: The inhibitory rate of the combination against A549 cell lines excelled the CDDP alone significantly (P <0.05); the combination showed a synergism inhibitory effect (Q=1.19). Compared with the monotherapy, the combination increased the cell percentage in G(0)/G(1) phase and decreased the cell percentage in S phase significantly (P <0.05); the protein and mRNA expressions of cyclin D1, PCNA, and Rb were significantly reduced; the protein and mRNA expressions of p16 were significantly enhanced. Compared with the monotherapy, the combination inhibited the tumor growth significantly In Vivo and reduced the weight of tumor (P <0.05); compared with the CDDP group, the spleen and thymus gland index of the combination group were enhanced significantly (P <0.05). CONCLUSIONS: The combination of WCF with CDDP significantly inhibited the A549 cell lines proliferation in vitro and the growth of the tumor In Vivo; it inhibited effectively the atrophy of the immune organ caused by chemotherapy. The combination inhibited overproliferation of A549 cell lines by arresting the G(0) /G(1) phase of cell cycle and affecting the protein and mRNA expressions of cell cycle-related proteins, cyclin D1, etc.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cisplatino/farmacologia , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Baço/efeitos dos fármacos , Baço/patologia , Timo/efeitos dos fármacos , Timo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA