Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 770-778, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621881

RESUMO

This paper aims to study the therapeutic effect of Massa Medicata Fermentata on hyperlipidemia model rats and investigate its mechanism of hypolipidemic effect with the help of non-targeted metabolomics. The mixed hyperlipidemia model rats were constructed by giving high-fat chow. After successful modeling, the rats were divided into the model group, pravastatin sodium group(4.4 mg·kg~(-1)), lipotropic group(0.1 g·kg~(-1)), high-dose group(2.4 g·kg~(-1)), medium-dose group(1.2 g·kg~(-1)), and low-dose group(0.6 g·kg~(-1)) of Massa Medicata Fermentata, and they were administered for four weeks once daily. An equal volume of ultrapure water was given to the blank group and model group. Serum lipid level and liver hematoxylin-eosin(HE) staining were used as indicators to estimate the intervention effect of Massa Medicata Fermentata on mixed hyperlipidemia, and the changes in metabolites in plasma of mixed hyperlipidemia model rats were analyzed by non-targeted metabolomics. The mechanism of the hypolipidemic effect of Massa Medicata Fermentata was analyzed through metabolite pathway enrichment. The results showed that compared with the model group, the Massa Medicata Fermentata administration group, especially the high-dose group, could significantly reduce the content of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c)(P<0.05 or P<0.01), and liver HE staining revealed that the number of adipocytes in the high-dose group was reduced to some extent. The potential biomarkers obtained by non-targeted metabolomics screening included glycerol 3-phosphate, sphingomyelin, sphingosine 1-phosphate, and deoxyuridine, which were mainly involved in the sphingolipid metabolism process, glycerophospholipid metabolism process, glycerol ester metabolism pathway, and pyrimidine metabolism pathway, totaling four possible metabolic pathways related to lipid metabolism. This study provides a reference for an in-depth investigation of the hypolipidemic mechanism of Massa Medicata Fermentata, which is of great significance for further promoting the clinical application of Massa Medicata Fermentata and increasing the indications.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fígado , Hiperlipidemias/tratamento farmacológico , Metabolômica , Colesterol , Dieta Hiperlipídica/efeitos adversos
2.
Am J Chin Med ; 51(7): 1845-1864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667863

RESUMO

Sleep deprivation (SD) has become a universal social problem. There is a causal relationship between SD and energy metabolism disorder. Phytochemicals have been demonstrated to have excellent sleep-promoting effects, and studies have shown that ginsenoside Rg5 (Rg5) exerts sedative and hypnotic effects. The present study aimed to investigate the role of Rg5 in regulating energy metabolism and explore the potential mechanism of improving sleep. Sleep-deprived rats were randomly divided into a control group (Ctrl), SD model group (SD), Rg5 group (GRg5), and melatonin group (MT). Sleep-deprived model rats were generated by housing rats in an SD box for 4 weeks. The Ctrl and SD groups were given equal volumes of saline. The Rg5 groups were given 25[Formula: see text]mg/kg Rg5 or 50[Formula: see text]mg/kg Rg5, and the MT group was given 0.27[Formula: see text]g/kg MT. A Western blot analysis and ELISA were used to detect the metabolic levels, mitochondrial functional proteins, AMPK pathway proteins, clock-related proteins, adenosine receptors, and neurotransmitter receptors. The results showed that Rg5 corrected abnormal glucose and lipid metabolism as well as improved ATP levels. In addition, Rg5 alleviated mitochondrial structural damage and improved the expression of proteins involved in mitochondrial biosynthesis, fission, and fusion. Moreover, Rg5 improved the expression of AMPK/PGC-1/Nrf-1 pathway proteins, regulated mitochondrial biological functions, and affected the rhythm characteristics of circadian clock-related proteins. Further, Rg5 improved the expression of A1R and A[Formula: see text]R as well as regulated the expression levels of GABAA1[Formula: see text] and mGluR5 to improve sleep in SD rats.

3.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3422-3428, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34396763

RESUMO

The effect of Danhong Injection on the endogenous metabolites of rabbit platelets was analyzed by the liquid chromatography-mass spectrometry( LC-MS) based metabonomic approach. Anti-platelet aggregation was detected after Danhong Injection treatment and the changes of platelet metabolites were analyzed by metabonomics. Principal component analysis( PCA) and partial least squares discriminant analysis( PLS-DA) were performed to investigate the effect of Danhong Injection on endogenous metabolites of platelets,characterize the biomarkers,and explore the relevant pathways and the underlying mechanism. As demonstrated by the pharmacodynamic results,Danhong Injection of different doses and concentrations antagonized platelet aggregation in a dose-and concentration-dependent manner. In contrast to the control group,25 differential metabolites such as nicotinic acid,nicotinic acid riboside,and hypoxanthine were screened out after platelets were treated by Danhong Injection. These metabolites,serving as important biomarkers,were mainly enriched in the nicotinic acid-niacinamide metabolic pathway and purine metabolic pathway. This study explored the therapeutic mechanism of Danhong Injection from a microscopic perspective by metabonomics,which is expected to provide a new idea for the investigation of platelet-related mechanisms.


Assuntos
Plaquetas , Medicamentos de Ervas Chinesas , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Coelhos , Tecnologia
4.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2276-2286, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34047131

RESUMO

The metabolites of salvianolic acid A and salvianolic acid B in rats were analyzed and compared by ultra-high-perfor-mance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS). After the rats were administrated by gavage, plasma at different time points and urine within 24 hours were collected to be treated by solid phase extraction(SPE), then they were gradient eluted by Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) and 0.1% formic acid solution(A)-acetonitrile(B) mobile phase system, and finally all biological samples of rats were analyzed under negative ion scanning mode. By obtaining the accurate relative molecular mass and multi-level mass spectrometry information of metabolites, combined with the characteristic cleavage law of the reference standard and literature reports, a total of 30 metabolites, including salvianolic acid A and B, were identified. Among them, there were 24 metabolites derived from salvianolic acid A, with the main metabolic pathways including ester bond cleavage, dehydroxylation, decarboxylation, hydrogenation, methylation, hydroxylation, sulfonation, glucuronidation, and their multiple reactions. There were 15 metabolites of salvianolic acid B, and the main biotransformation pathways were five-membered ring cracking, ester bond cleavage, decarboxylation, dehydroxylation, hydrogenation, methylation, sulfonation, glucuronidation, and their compound reactions. In this study, the cross-metabolic profile of salvianolic acid A and B was elucidated completely, which would provide reference for further studies on the basis of pharmacodynamic substances and the exploration of pharmacological mechanism.


Assuntos
Tecnologia , Animais , Benzofuranos , Ácidos Cafeicos , Cromatografia Líquida de Alta Pressão , Lactatos , Espectrometria de Massas , Ratos
5.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3952-3960, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893594

RESUMO

A method of ultra-high performance liquid chromatography coupled with quadrupole/electrostatic field Obitrap high-resolution mass spectrometry(UHPLC-Q-Exactive MS) was established to comprehensively identify the metabolites of carnosic acid in rats. After oral gavage of carnosic acid CMC-Na suspension in rats, urine, plasma and feces samples were collected and pretreated by solid phase extraction(SPE). Acquity UPLC BEH C_(18 )column(2.1 mm×100 mm, 1.7 µm) was used with 0.1% formic acid solution(A)-acetonitrile(B) as the mobile phase for the gradient elution. Biological samples were analyzed by quadrupole/electrostatic field Obitrap high-resolution mass spectrometry in positive and negative ion mode. Based on the accurate molecular mass, fragment ion information, and related literature reports, a total of 28 compounds(including carnosic acid) were finally identified in rat samples. As a result, the main metabolic pathways of carnosic acid in rats are oxidation, hydroxylation, methylation, glucuronide conjugation, sulfate conjugation, S-cysteine conjugation, glutathione conjugation, demethylation, decarbonylation and their composite reactions. The study showed that the metabolism of carnosic acid in rats could be efficiently and comprehensively clarified by using UHPLC-Q-Exactive MS, providing a reference for clarifying the material basis and metabolic mechanism of carnosic acid.


Assuntos
Abietanos , Extração em Fase Sólida , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA