Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Sep Sci ; 46(19): e2300314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37485594

RESUMO

Compound Chinese medicine preparation is a complex multi-component system. The traditional methods such as physicochemical identification and quantification of several main index components cannot provide adequate quality evaluation for Compound Banlangen Granules. The objective of this work was to establish a characteristic degradation fingerprint of Compound Banlangen Granules polysaccharides, and the reference fingerprint was obtained from the model samples prepared using prescription medicinal herbs from different origins. The partial degradation products of Compound Banlangen Granules polysaccharides were profiled by capillary zone electrophoresis, and the quality difference of polysaccharides of these preparations was compared by cluster analysis and principal component analysis. It was found that the contents and the characteristic degradation fingerprints of the polysaccharides from 25 batches of Compound Banlangen Granules of 17 manufacturers were significantly different. The quality of Compound Banlangen Granules polysaccharides was evaluated by the characteristic degradation fingerprint tool with satisfactory results. The present method provides a reference for the quality control strategy development of polysaccharides in other compound Chinese medicine preparations.

2.
J Ethnopharmacol ; 301: 115815, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36220508

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Piper longum L., an herbal medicine used in India and other Asian countries, is prescribed routinely for a range of diseases, including tumor. Piperlongumine, a natural product isolated from Piper longum L., has received widespread attention due to its various pharmacological activities, such as anti-inflammatory, antimicrobial, and antitumor effects. AIM OF THE STUDY: Chronic myelogenous leukemia (CML) is a hematopoietic disease caused by Bcr-Abl fusion gene, with an incidence of 15% in adult leukemias. Targeting Bcr-Abl by imatinib provides a successful treatment approach for CML. However, imatinib resistance is an inevitable issue for CML treatment. In particular, T315I mutant is the most stubborn of the Bcr-Abl point mutants associated with imatinib resistance. Therefore, it is urgent to find an alternative approach to conquer imatinib resistance. This study investigated the role of a natural product piperlongumine in overcoming imatinib resistance in CML. MATERIALS AND METHODS: Cell viability and apoptosis were evaluated by MTS assay and Annexin V/propidium iodide counterstaining assay, respectively. Levels of intracellular signaling proteins were assessed by Western blots. Mitochondrial membrane potential was reflected by the fluorescence intensity of rhodamine-123. The function of proteasome was detected using 20S proteasomal activity assay, proteasomal deubiquitinase activity assay, and deubiquitinase active-site-directed labeling. The antitumor effects of piperlongumine were assessed with mice xenografts. RESULTS: We demonstrate that (i) Piperlongumine inhibits proteasome function by targeting 20S proteasomal peptidases and 19S proteasomal deubiquitinases (USP14 and UCHL5) in Bcr-Abl-WT and Bcr-Abl-T315I CML cells; (ii) Piperlongumine inhibits the cell viability of CML cell lines and primary CML cells; (iii) Proteasome inhibition by piperlongumine leads to cell apoptosis and downregulation of Bcr-Abl; (iv) Piperlongumine suppresses the tumor growth of CML xenografts. CONCLUSIONS: These results support that blockade of proteasome activity by piperlongumine provides a new therapeutic strategy for treating imatinib-resistant CML.


Assuntos
Antineoplásicos , Produtos Biológicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Camundongos , Animais , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Fusão bcr-abl/genética , Apoptose , Enzimas Desubiquitinantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Ubiquitina Tiolesterase/uso terapêutico
3.
Trends Plant Sci ; 27(12): 1253-1265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028431

RESUMO

The biochemical versatility of sulfur (S) lends itself to myriad roles in plant-pathogen interactions. This review evaluates the current understanding of mechanisms by which pathogens acquire S from their plant hosts and highlights new evidence that plants can limit S availability during the immune responses. We discuss the discovery of host disease-susceptibility genes related to S that can be genetically manipulated to create new crop resistance. Finally, we summarize future research challenges and propose a research agenda that leverages systems biology approaches for a holistic understanding of this important element's diverse roles in plant disease resistance and susceptibility.


Assuntos
Resistência à Doença , Plantas , Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Enxofre , Interações Hospedeiro-Patógeno
4.
Acta Pharmacol Sin ; 43(8): 2128-2138, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34893683

RESUMO

The ubiquitin-proteasome system (UPS) is essential for maintaining cell homeostasis by orchestrating the protein degradation, but is impaired in various diseases, including cancers. Several proteasome inhibitors, such as bortezomib, are currently used in cancer treatment, but associated toxicity limits their widespread application. Recently metal complex-based drugs have attracted great attention in tumor therapy; however, their application is hindered by low water-solubility and poor absorbency. Herein, we synthesized a new type of gold (I) complex named Na-AuPT, and further characterized its anticancer activity. Na-AuPT is highly water-soluble (6 mg/mL), and it was able to potently inhibit growth of a panel of 11 cancer cell lines (A549, SMMC7721, H460, HepG2, BEL7402, LNCap, PC3, MGC-803, SGC-7901, U266, and K562). In A549 and SMMC7721 cells, Na-AuPT (in a range of 2.5-20 µM) inhibited the UPS function in a dose-dependent fashion by targeting and inhibiting both 20 S proteasomal proteolytic peptidases and 19 S proteasomal deubiquitinases. Furthermore, Na-AuPT induced caspase-dependent apoptosis in A549 and SMMC7721 cells, which was prevented by the metal chelator EDTA. Administration of Na-AuPT (40 mg · kg-1 · d-1, ip) in nude mice bearing A549 or SMMC7721 xenografts significantly inhibited the tumor growth in vivo, accompanied by increased levels of total ubiquitinated proteins, cleaved caspase 3 and Bax protein in tumor tissue. Moreover, Na-AuPT induced cell death of primary mononuclear cells from 5 patients with acute myeloid leukemia ex vivo with an average IC50 value of 2.46 µM. We conclude that Na-AuPT is a novel metal-based proteasome inhibitor that may hold great potential for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Ubiquitina/metabolismo , Água
5.
Eur J Pharmacol ; 876: 173064, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179085

RESUMO

The selective BCR-ABL tyrosine kinase inhibitor imatinib is one of the first-line therapies in the management of chronic myeloid leukaemia (CML). However, acquired resistance to this inhibitor, which is especially conferred by the T315I point mutation in BCR-ABL, impedes the efficacy of imatinib therapy. Therefore, the discovery and development of novel agents to overcome imatinib resistance is urgently needed. Pseudolaric acid B (PAB), a small molecule isolated from the traditional Chinese medicine Cortex pseudolaricis, has been reported to be a potential candidate for immune disorders and cancer treatment. However, its effects on CML and the involved molecular mechanism have not been reported. In the current study, by performing both in vitro and in vivo experiments in CML cells, we showed that PAB blocked the cell cycle at G2/M phase and subsequently activated the caspase pathway, cleaved the BCR-ABL protein and inhibited the BCR-ABL downstream pathways, ultimately leading to cell proliferation inhibition, cytotoxicity and apoptosis. These events were observed in both imatinib-sensitive and imatinib-insensitive CML cell lines. Moreover, PAB decreased the viability of primary blood mononuclear cells from CML patients and induced apoptosis in these cells. Our findings suggest that PAB could be used as a novel agent to sensitize imatinib-resistant CML.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mitose/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Ann Transl Med ; 8(24): 1680, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33490192

RESUMO

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is the pathological process caused by the death of the active components of the head of the femur due to the high dose of hormones, which has become a common public health problem. BuShenHuoXue capsule (BSHXC) has been clinically proven to be effective against the SONFH, the main pharmacological action of BSHXC is tonifying kidney and promoting blood circulation, but the mechanism remains to be explored. METHODS: We established a rat SONFH model by injecting Methylprednisolone (MPS) into the right gluteus muscle 30 mg/kg/d, 3 days of continuous injection every week, 4 weeks in total. According to the clinical dosage of BSHXC (Herba epimedium 3 g, Eucommia ulmoides 15 g, Salvia miltiorrhizae 30 g, Chuanxiong 15 g, Paeonia lactiflora Pall 15 g, Poria cocos 12 g, Achyranthes bidentata 12 g, antler gum 10 g, Cyperus rotundus L. Nine g and Radix Glycyrrhizae 9 g), it was converted into the equivalent dose of rats, and gavage was performed at the weight of 10 mL/kg, once per day. The BSHXC was subjected to experiments in vivo, SONFH pharmacodynamics, bioinformatics, and network of pharmacology to determine the active ingredients, and its protective role against SONFH, Enrichment analysis was performed to explore the possible mechanism of BSHXC, and cell experiments were undertaken to analyze the impact of BSHXC on the hormones associated with bone marrow mesenchymal stem cells (BMSCs) between osteogenesis and apoptosis. RESULTS: Experiments confirmed that BSHXC could effectively reduce bone loss in SONFH rat models. From bioinformatics and a network constructed from 10 drugs-208 pharmacology-126 targets, the enrichment analysis showed that the core targets were inflammatory reaction, steroid hormones, estrogen receptors, osteoporosis, and adjustment of osteogenesis and osteoclast differentiation, among others. The cell proliferation and staining supported that the mechanism of BSHXC promoted osteogenesis and intervening in apoptosis. CONCLUSIONS: The BSHXC reduced the inflammatory response, changed steroid response, regulated estrogen receptors, delayed osteoporosis, regulated osteoblast and osteoclast differentiation by regulating related targets, and improved the local microenvironment by a multi-component, multi-target, and multi-link process to delay or reverse the progression of SONFH.

7.
Expert Opin Drug Discov ; 13(7): 643-660, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688074

RESUMO

INTRODUCTION: Increasing evidence has expanded the role of green tea from a traditional beverage to a source of pharmacologically active molecules with diverse health benefits. However, conclusive clinical results are needed to better elucidate the cancer-preventive and therapeutic effects of green tea polyphenols (GTPs). Areas covered: The authors describe GTPs' chemical compositions and metabolic biotransformations, and their recent developments in drug discovery, focusing on their cancer chemopreventive and therapeutic effects. They then review the recent development of GTP-loaded nanoparticles and GTP prodrugs. Expert opinion: GTPs possess potent anticarcinogenic activities through interfering with the initiation, development and progression phases of cancer. There are several challenges (e.g. poor bioavailability) in developing GTPs as therapeutic agents. Use of nanoparticle-based delivery systems has provided unique advantages over purified GTPs. However, there is still a need to determine the actual magnitude and pharmacological mechanisms of GTPs encapsulated in nanoparticles, in order to address newly emerging safety issues associated with the potential 'local overdose' effect. The use of Pro- epigallocatechin gallate (Pro-EGCG) as a prodrug appears to offer improved in vitro stability as well as better in vivo bioavailability and efficacies in a number of animal studies, suggesting its potential as a therapeutic agent for further study and development.


Assuntos
Anticarcinógenos/farmacologia , Polifenóis/farmacologia , Chá/química , Animais , Anticarcinógenos/administração & dosagem , Anticarcinógenos/isolamento & purificação , Catequina/administração & dosagem , Catequina/análogos & derivados , Catequina/isolamento & purificação , Catequina/farmacologia , Descoberta de Drogas/métodos , Humanos , Nanopartículas , Neoplasias/prevenção & controle , Polifenóis/administração & dosagem , Polifenóis/isolamento & purificação , Pró-Fármacos
8.
Sci China Life Sci ; 58(12): 1191-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566803

RESUMO

Naturally occurring molecules derived from higher plants, animals, microorganisms and minerals play an important role in the discovery and development of novel therapeutic agents. The identification of molecular targets is of interest to elucidate the mode of action of these compounds, and it may be employed to set up target-based assays and allow structure-activity relationship studies to guide medicinal chemistry efforts toward lead optimization. In recent years, plant-derived natural compounds possessing potential anti-tumor activities have been garnering much interest and efforts are underway to identify their molecular targets. Here, we attempt to summarize the discoveries of several natural compounds with activities against hematological malignancies, such as adenanthin, oridonin, gambogic acid and wogonoside, the identification of their targets, and their modes of actions.


Assuntos
Produtos Biológicos/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Fitoterapia/métodos , Produtos Biológicos/química , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/uso terapêutico , Flavanonas/química , Flavanonas/uso terapêutico , Glucosídeos/química , Glucosídeos/uso terapêutico , Neoplasias Hematológicas/metabolismo , Humanos , Estrutura Molecular , Terapia de Alvo Molecular/tendências , Fitoterapia/tendências , Xantonas/química , Xantonas/uso terapêutico
9.
Toxicol Lett ; 228(3): 170-8, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24853302

RESUMO

Anacardic acid (6-pentadecylsalicylic acid, AA), a natural compound isolated from the traditional medicine Amphipterygium adstringens, has been reported to possess antitumor activities. However, its molecular targets have not been thoroughly studied. Here, we report that AA is a potent inducer of endoplasmic reticulum (ER) stress, leading to apoptosis in hepatoma HepG2 and myeloma U266 cells. Induction of ER stress by AA was supported by a dose- and time-dependent increase in expression of the ER signaling downstream molecules, such as GRP78/BiP, phosphorylated eIF2α, ATF4 and CHOP in both HepG2 and U266 cell lines. Blockage of ATF4 expression by siRNA partially inhibited, while knockdown of CHOP expression by siRNA slightly increased AA-induced cell death in these cells. In addition, AA suppressed HepG2 xenograft tumor growth, associated with increased ER stress in vivo. These results suggest that AA induces tumor cell apoptosis associated with ATF4-dependent ER stress.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Ácidos Anacárdicos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Fator 4 Ativador da Transcrição/genética , Animais , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Fosforilação , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição CHOP/metabolismo , Transfecção , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Eur J Pharmacol ; 658(2-3): 242-7, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21392503

RESUMO

Shikonin, extracted from medicinal Chinese herb (Lithospermum erythrorhizo), was reported to exert anti-inflammatory and anti-cancer effects both in vitro and in vivo. We have found that proteasome was a molecular target of shikonin in tumor cells, but whether shikonin targets macrophage proteasome needs to be investigated. In the current study, we report that shikonin inhibited inflammation in mouse models as efficiently as dexamethasone. Shikonin at 4 µM reduced the Lipopolysaccharides (LPS)-mediated TNFα release in rat primary macrophage cultures, and blocked the translocation of p65-NF-κB from the cytoplasm to the nucleus, associated with decreased proteasomal activity. Consistently, shikonin accumulated IκB-α, an inhibitor of NF-κB, and ubiquitinated proteins in rat primary macrophage cultures, demonstrating that the proteasome is a target of shikonin under inflammatory conditions. Shikonin also induced macrophage cell apoptosis and cell death. These results demonstrate for the first time that proteasome inhibition by shikonin contributes to its anti-inflammatory effect. The novel finding about macrophage proteasome as a target of shikonin suggests that this medicinal compound has great potential to be developed into an anti-inflammatory agent.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Inibidores de Proteassoma , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Permeabilidade Capilar/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Pavilhão Auricular/efeitos dos fármacos , Pavilhão Auricular/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lithospermum/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , Naftoquinonas/uso terapêutico , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA