Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chin J Integr Med ; 29(12): 1111-1120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610554

RESUMO

OBJECTIVE: To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo. RESULTS: The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01). CONCLUSION: Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Peixe-Zebra , Inibidor de NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Phytomedicine ; 119: 154977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506573

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , Dengue/tratamento farmacológico , Proteínas de Choque Térmico HSP70 , Sorogrupo , Membrana Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Citoplasma/metabolismo
3.
J Ethnopharmacol ; 317: 116743, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37331452

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY: The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS: The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS: Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION: Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Salvia miltiorrhiza , Animais , Camundongos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Peixe-Zebra , Receptor Nicotínico de Acetilcolina alfa7 , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Células RAW 264.7
4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259408

RESUMO

BACKGROUND: At present, about half of the world's population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological activities, including exerting antiviral effects. The aim of this study was to investigate the anti-DENV effects of n-butanol extract from Glycyrrhizae Radix et Rhizome (GRE). METHODS: Compounds analysis of GRE was conducted via ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The antiviral activities of GRE were determined by the CCK-8 assay, plaque assay, qRT-PCR, Western blotting, and the immunofluorescence assay. The DENV-infected suckling mice model was constructed to explore the antiviral effects of GRE in vivo. RESULTS: Four components in GRE were analyzed by UHPLC-MS/MS, including glycyrrhizic acid, glycyrrhetnic acid, liquiritigenin, and isoliquiritigenin. GRE inhibited the attachment process of the virus replication cycle and reduced the expression of the E protein in cell models. In the in vivo study, GRE significantly relieved clinical symptoms and prolong survival duration. GRE also significantly decreased viremia, reduced the viral load in multiple organs, and inhibited the release of pro-inflammatory cytokines in DENV-infected suckling mice. CONCLUSIONS: GRE exhibited significant inhibitory activities in the adsorption stage of the DENV-2 replication cycle by targeting the envelope protein. Thus, GRE might be a promising candidate for the treatment of DENV infection.

5.
Food Funct ; 13(6): 3590-3602, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262135

RESUMO

Panax notoginseng has been used both as a traditional medicine and as a functional food for hundreds of years in Asia. However, the active constituents from P. notoginseng and their pharmacologic properties still need to be further explored. In this study, one new dammarane-type triterpenoid saponin (1), along with fourteen known analogs (2-15) were isolated and identified from the roots of P. notoginseng. The anti-inflammatory, anti-angiogenetic and anti-dengue virus effects of these isolated compounds were further evaluated. Compounds 1, 3, 5-7 and 10-12 exerted anti-inflammatory effects in two different zebrafish inflammatory models. Among them, 11, with the most significant activities, alleviated the inflammatory response by blocking the MyD88/NF-κB and STAT3 pathways. Moreover, compound 15 showed anti-angiogenetic activities in Tg(fli1:EGFP) and Tg(flk1:GFP) zebrafish, while 3 and 5 only inhibited angiogenesis in Tg(fli1:EGFP) zebrafish. Additionally, compounds 1, 3, 6, 8, 9 and 12 suppressed the replication of dengue virus either at the viral adsorption and entry stages or at the intracellular replication step. In conclusion, these findings enrich knowledge of the diversity of saponins in P. notoginseng and suggest that the dammarane-type triterpenoid saponins from P. notoginseng may be developed as potential functional foods to treat inflammation, angiogenesis or dengue-related diseases.


Assuntos
Panax notoginseng , Panax , Saponinas , Triterpenos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Raízes de Plantas/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Peixe-Zebra , Damaranos
7.
J Ethnopharmacol ; 266: 113443, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022344

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1ß-hydroxyl-arenobufagin (1ß-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1ß-OH-ABF have not been defined. AIM OF THE STUDY: To evaluate the anti-hepatoma activity of 1ß-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS: The anti-proliferative effects of 1ß-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1ß-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1ß-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1ß-OH-ABF in vivo. RESULTS: We found that 1ß-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1ß-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1ß-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1ß-OH-ABF-mediated apoptosis. Critically, 1ß-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION: 1ß-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1ß-OH-ABF may serve as a potential agent for the treatment of liver cancer.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Bufanolídeos/química , Bufanolídeos/isolamento & purificação , Carcinoma Hepatocelular/patologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
Toxicol Appl Pharmacol ; 407: 115252, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987027

RESUMO

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa, was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glicosídeos/farmacologia , MicroRNAs/biossíntese , Monócitos/efeitos dos fármacos , Alvéolos Pulmonares/citologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/biossíntese , Relação Dose-Resposta a Droga , Glicosídeos/uso terapêutico , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Alvéolos Pulmonares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Chin J Integr Med ; 26(7): 552-559, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240474

RESUMO

Lipopolysaccharide (LPS)-induced inflammation causes massive threatening diseases, such as sepsis, acute lung injury and multiple organ dysfunction syndrome. Efficient treatment to prevent inflammation is crucial in LPS-induced inflammatory diseases. Heat-clearing Chinese medicines (CMs) have been used to ameliorate LPS-induced inflammation in China for centuries. Heat-clearing CMs regulate inflammatory pathways, thereby inhibiting the release of inflammatory factors. This review aimed to introduce promising heat-clearing CMs countering LPS-induced inflammation in the last 5 years, exploring the underlying molecular mechanisms.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Animais , Temperatura Corporal , Temperatura Alta , Humanos , Lipopolissacarídeos
10.
Fitoterapia ; 139: 104391, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31682871

RESUMO

Two new quinolizidine-based alkaloids (2 and 12), along with ten known ones (1, 3-11) were isolated from the roots of S. tonkinensis. Their structures were determined by spectroscopic data (including NMR, MS, IR, and UV), X-ray single crystal diffraction, electronic circular dichroism analyses (ECD), and comparing with related literatures. Compounds 1, 3-12 at non-toxic concentrations exhibited potent anti-inflammatory activities according to in vitro and in vivo anti-inflammatory tests. Among them, (-)-anagyrine (4), sophocarpine (8), 14ß-hydroxymatrine (10), and 7ß-sophoramine (12) showed more potent in vitro anti-inflammatory activities, and 5α,14ß-dihydroxymatrine (2), (-)-anagyrine (4), sophocarpine (8), and 5α-hydroxymatrine (9) exhibited better in vivo anti-inflammatory effects.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Quinolizidinas/farmacologia , Sophora/química , Alcaloides/isolamento & purificação , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/isolamento & purificação , Azocinas , China , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Quinolizidinas/isolamento & purificação , Quinolizinas , Células RAW 264.7 , Peixe-Zebra
11.
Phytomedicine ; 61: 152843, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31039533

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown. PURPOSE: This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms. METHODS: MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo. RESULTS: ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo. CONCLUSION: We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piperidinas/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião não Mamífero , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolizidinas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia
12.
Fitoterapia ; 134: 362-371, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30872126

RESUMO

Toad venom (venenum bufonis, also called Chan'su) has been widely used for centuries in China to treat different diseases, especially for cancer. Bufadienolides are mainly responsible for the anti-cancer effects of toad venom. However, systematic chemical composition and cytotoxicity as well as key pharmacophores of these bufadienolides from toad venom have not yet been defined clearly. To enrich the understanding of the diversity of bufadienolides and to find bufadienolides with better activities from toad venom. This study was carried out to isolate chemical constituents, research their anti-tumor effects and mechanisms by MTT assay, flow cytometry and Western blotting, and develop a CoMFA and CoMSIA quantitative structure-activity relationship (QSAR) model for illustrating the vital relationship between the chemical structures and cytotoxicities. Among 47 natural bufadienolides, most of bufadienolides (21 compounds isolated in this study and 26 compounds isolated previously) could significantly inhibit the proliferation of cancer cells, and compounds 1, 8, 12, 18 and 19 showed the most potent inhibitory activity against four types of human tumor cells. Compound 18 induced G2/M cell cycle arrest and apoptosis. Moreover, 3D contour maps generated from CoMFA and CoMSIA identified several pharmacophores of bufadienolides responsible for the anti-tumor activities. Our study might provide reliable information for future structure modification and rational drug design of bufadienolides with anticancer activities in medical chemistry.


Assuntos
Venenos de Anfíbios/farmacologia , Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
13.
Oncotarget ; 7(16): 21222-34, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27034013

RESUMO

Liang-Ge-San (LGS) is a classic formula in traditional Chinese medicine, which is widely used to treat acute lung injury (ALI), pharyngitis and amygdalitis in clinic. However, the underlying mechanisms remain poorly defined. In this study, we discovered that LGS exerted potent anti-inflammatory effects in lipopolysaccharide (LPS)-induced inflammation. We found that LGS significantly depressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophage cells. The degradation and phosphorylation of IκBα and the nuclear translocation of NF-κB p65 were also inhibited. Moreover, LGS activated α7 nicotinic cholinergic receptor (α7nAchR). The blockage of α7nAchR by selective inhibitor methyllycaconitine (MLA) or α7nAchR siRNA attenuated the inhibitory effects of LGS on IκBα, NF-κB p65, IL-6 and TNF-α. Critically, LGS significantly inhibited inflammation in LPS-induced ALI rats through the activation of NF-κB signaling pathway. However, these protective effects could be counteracted by the treatment of MLA. Taken together, we first demonstrated anti-inflammatory effects of LGS both in vitro and in vivo through cholinergic anti-inflammatory pathway. The study provides a rationale for the clinical application of LGS as an anti-inflammatory agent and supports the critical role of cholinergic anti-inflammatory pathway in inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Colinérgicos/farmacologia , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Medicina Tradicional Chinesa , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Nat Prod Res ; 30(12): 1417-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26252201

RESUMO

One new chalcone-flavone biflavonoid, 3'-hydroxydaphnodorin A (1), together with 12 known biflavonoids (2-13), was isolated from the rhizome of Wikstroemia indica. Their structures were established on the basis of extensive spectroscopic methods. Eight isolated compounds 1-3, 6, 7, 9, 12 and 13 were evaluated for their cytotoxic activities against cancer-derived cell lines Hep3B, HepG2 and CNE2, and 1 was found to possess moderate cytotoxicity against HepG2 and CNE2 cell lines, with IC50 values of 65.5 ± 11.4 and 53.6 ± 10.1 µM, respectively.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/química , Biflavonoides/farmacologia , Wikstroemia/química , Antineoplásicos Fitogênicos/química , Biflavonoides/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Extratos Vegetais/química , Rizoma/química
15.
Oncotarget ; 6(33): 34258-75, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26485758

RESUMO

Arenobufagin, a representative bufadienolide, is the major active component in the traditional Chinese medicine Chan'su. It possesses significant antineoplastic activity in vitro. Although bufadienolide has been found to disrupt the cell cycle, the underlying mechanisms of this disruption are not defined. Here, we reported that arenobufagin blocked the transition from G2 to M phase of cell cycle through inhibiting the activation of CDK1-Cyclin B1 complex; The tumor suppressor p53 contributed to sustaining arrest at the G2 phase of the cell cycle in hepatocellular carcinoma (HCC) cells. Moreover, arenobufagin caused double-strand DNA breaks (DSBs) and triggered the DNA damage response (DDR), partly via the ATM/ATR-Chk1/Chk2-Cdc25C signaling pathway. Importantly, we used a synthetic biotinylated arenobufagin-conjugated chemical probe in live cells to show that arenobufagin accumulated mainly in the nucleus. The microscopic thermodynamic parameters measured using isothermal titration calorimetry (ITC) also demonstrated that arenobufagin directly bound to DNA in vitro. The hypochromicity in the UV-visible absorption spectrum, the significant changes in the circular dichroism (CD) spectrum of DNA, and the distinct quenching in the fluorescence intensity of the ethidium bromide (EB)-DNA system before and after arenobufagin treatment indicated that arenobufagin bound to DNA in vitro by intercalation. Molecular modeling suggested arenobufagin intercalated with DNA via hydrogen bonds between arenobufagin and GT base pairs. Collectively, these data provide novel insights into arenobufagin-induced cell cycle disruption that are valuable for the further discussion and investigation of the use of arenobufagin in clinical anticancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Western Blotting , Calorimetria , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaio Cometa , Humanos , Imunoprecipitação , Substâncias Intercalantes/farmacologia , Modelos Moleculares , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Transfecção
16.
Nat Prod Commun ; 10(8): 1353-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26434114

RESUMO

A new C23 steroid, (3ß,5ß,14ß)-methyl (3-hydroxy-14,15-epoxy-20-oxo-21-norcholan-24-oate) (1), together with four known ones (2-5), were isolated from the venom of Bufo bufo gargarizans. Their structures were elucidated on the basis of extensive spectroscopic analysis. The cytotoxicity of these compounds was also evaluated against human hepatocarcinoma HepG2 cells. Compound 3 showed significant cytotoxicity with an IC50 value of 16.8 +/- 0.7 µM.


Assuntos
Venenos de Anfíbios/química , Antineoplásicos/química , Esteroides/química , Venenos de Anfíbios/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Bufo bufo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Estrutura Molecular , Esteroides/isolamento & purificação , Esteroides/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-25548591

RESUMO

Celastrus aculeatus Merr. has been widely used in traditional Chinese medicine to treat rheumatoid arthritis (RA) in clinic. However, the main active fraction of this plant is still unclear. In this study, we attempted to evaluate the suppressive effect of ethyl acetate extract (EAE) from Celastrus aculeatus Merr. on synovial inflammation in adjuvant arthritis (AA) rats induced by Mycobacterium tuberculosis H37Ra (Mtb) and to explore the underlying mechanisms. SD rats immunized with heat-killed Mtb were fed with EAE and observed for erythema, swelling, and induration of each paw. The pathologic changes in joint synovium were tested by hematoxylin-eosin staining. Apoptosis induction of synoviocytes was tested immunohistochemically. Apoptosis of peripheral lymphocytes and the level of regulatory T cells were analyzed by flow cytometry. After treatment with EAE, the joint inflammation in rats with AA was alleviated. Both apoptotic ratios of synoviocytes and peripheral lymphocytes and the ratio of CD4(+)CD25(+)FOXP3(+) to CD4 regulatory T cells were significantly increased. In summary, we first demonstrated that EAE of Celastrus aculeatus Merr. can inhibit synovial inflammation in AA rats through apoptosis induction of CD4(+)CD25(+)FOXP3(+) T cells. Our study provides a rationale for the application of Celastrus aculeatus Merr. to treat RA.

18.
Carcinogenesis ; 34(6): 1331-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23393227

RESUMO

Hepatocellular carcinoma (HCC) is a deadly form of cancer without effective chemotherapy so far. Currently, only sorafenib, a multitargeted tyrosine kinase inhibitor, slightly improves survival in HCC patients. In searching for natural anti-HCC components from toad venom, which is frequently used in the treatment of liver cancer in traditional Chinese medicine, we discovered that arenobufagin, a bufadienolide from toad venom, had potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. We found that arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death. In addition, we observed the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway by arenobufagin. Interestingly, inhibition of mTOR by rapamycin or siRNA duplexes augmented arenobufagin-induced apoptosis and autophagy. Finally, arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition. In summary, we first demonstrated the antineoplastic effect of arenobufagin on HCC cells both in vitro and in vivo. We elucidated the underlying antineoplastic mechanisms of arenobufagin that involve cross talk between apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathway. This study may provide a rationale for future clinical application using arenobufagin as a chemotherapeutic agent for HCC.


Assuntos
Apoptose/efeitos dos fármacos , Bufanolídeos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Venenos de Anfíbios/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Medicina Tradicional Chinesa , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/biossíntese
19.
Eur J Pharmacol ; 692(1-3): 19-28, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22841670

RESUMO

Venenum Bufonis, a traditional Chinese medicine, is widely used in the treatment of liver cancer in modern Chinese medical practices. In our search for anti-hepatoma constituents in Venenum Bufonis, bufotalin, bufalin, telocinobufagin and cinobufagin were obtained. Bufotalin was the most potent active compound among these four bufadienolides, and it exerted stronger inhibitory effect on the viability of doxorubicin-induced multidrug resistant liver cancer cells (R-HepG2) than that of their parent cells HepG2. Structure-activity relationship analysis indicated that the acetyl group linked to C-16 of bufadienolides might be useful for increasing anti-hepatoma activity. Further mechanistic studies revealed that bufotalin treatment induced cell cycle arrest at G(2)/M phase through down-regulation of Aurora A, CDC25, CDK1, cyclin A and cyclin B1, as well as up-regulation of p53 and p21. Bufotalin treatment also induced apoptosis which was accompanied by decrease in mitochondrial membrane potential, increases in intracellular calcium level and reactive oxygen species production, activations of caspase-9 and -3, cleavage of poly ADP-ribose polymerase (PARP) as well as changes in the expressions of bcl-2 and bax. It was also found that the inhibition of Akt expression and phosphorylation was involved in apoptosis induction, and specific Akt inhibitor LY294002 or siRNA targeting Akt can synergistically enhanced bufotalin-induced apoptosis. In vivo study showed that bufotalin significantly inhibited the growth of xenografted R-HepG2 cells, without body weight loss or marked toxicity towards the spleen. These results indicate that bufotalin has a promising potential to become a novel anti-cancer agent for the treatment of liver cancer with multidrug resistance.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bufanolídeos/química , Bufanolídeos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Bufanolídeos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Caspases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA