Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Biol ; 59(1): 828-839, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34196587

RESUMO

CONTEXT: Pien-Tze-Huang (PTH) is traditionally applied to treat various inflammation-related diseases including stroke. However, literature regarding the anti-inflammatory effects and possible mechanisms of PTH in ischaemic stroke is unavailable. OBJECTIVE: This study investigates the anti-inflammatory effects and its underlying mechanism of PTH on ischaemic stroke. MATERIALS AND METHODS: Cerebral ischaemia-reperfusion injury was induced through 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion in male Sprague-Dawley (SD) rats receiving oral pre-treatment with PTH (180 mg/kg) for 4 days. TLR4 antagonist TAK-242 (3 mg/kg) was injected intraperitoneally at 1.5 h after MCAO. MRI, HE staining, qRT-PCR, western blot, and immunofluorescence methods were employed. RESULTS: PTH treatment markedly reduced cerebral infarct volume (by 51%), improved neurological function (by 33%), and ameliorated brain histopathological damage in MCAO rats. It also reduced the levels of four inflammatory mediators including IL-1ß (by 70%), IL-6 (by 78%), TNF-α (by 60%) and MCP-1 (by 58%); inhibited microglia and astrocyte activation; and decreased protein expression of iNOS and COX-2 in injured brains. Moreover, PTH down-regulated the protein expressions of TLR4, MyD88, and TRAF6; reduced the expression and nuclear translocation of NF-κB; and lowered the protein expressions of p-ERK1/2, p-JNK, and p-p38. Similar effects were observed in MCAO rats with TAK-242 treatment. However, combined administration of PTH and TAK-242 did not significantly reinforce the anti-inflammatory effects of PTH. DISCUSSION AND CONCLUSION: PTH improved cerebral ischaemia-reperfusion injury by inhibiting neuroinflammation partly via the TLR4/NF-κB/MAPK signalling pathway, which will help guide its clinical application.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , AVC Isquêmico/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA