Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5531-5539, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114145

RESUMO

"Tangjie" leaves of cultivated Qinan agarwood were used to obtain the complete chloroplast genome using high-throughput sequencing technology. Combined with 12 chloroplast genomes of Aquilaria species downloaded from NCBI, bioinformatics method was employed to determine the chloroplast genome characteristics and phylogenetic relationships. The results showed that the chloroplast genome sequence length of cultivated Qinan agarwood "Tangjie" leaves was 174 909 bp with a GC content of 36.7%. A total of 136 genes were annotated, including 90 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Sequence repeat analysis detected 80 simple sequence repeats(SSRs) and 124 long sequence repeats, with most SSRs composed of A and T bases. Codon preference analysis revealed that AUU was the most frequently used codon, and codons with A and U endings were preferred. Comparative analysis of Aquilaria chloroplast genomes showed relative conservation of the IR region boundaries and identified five highly variable regions: trnD-trnY, trnT-trnL, trnF-ndhJ, petA-cemA, and rpl32, which could serve as potential DNA barcodes specific to the Aquilaria genus. Selection pressure analysis indicated positive selection in the rbcL, rps11, and rpl32 genes. Phylogenetic analysis revealed that cultivated Qinan agarwood "Tangjie" and Aquilaria agallocha clustered together(100% support), supporting the Chinese origin of Qinan agarwood from Aquilaria agallocha. The chloroplast genome data obtained in this study provide a foundation for studying the genetic diversity of cultivated Qinan agarwood and molecular identification of the Aquilaria genus.


Assuntos
Genoma de Cloroplastos , Thymelaeaceae , Filogenia , Códon , Anotação de Sequência Molecular , Thymelaeaceae/genética
2.
Chin Med ; 17(1): 112, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171596

RESUMO

Traditional Chinese medicine (TCM) plays an important role in the global traditional health systems. However, adulterated and counterfeit TCM is on the rise. DNA barcoding is an effective, rapid, and accurate technique for identifying plant species. In this study, we collected manuscripts on DNA barcoding published in the last decade and summarized the use of this technique in identifying 50 common Chinese herbs listed in the Chinese pharmacopoeia. Based on the dataset of the major seven DNA barcodes of plants in the NCBI database, the strengths and limitations of the barcodes and their derivative barcoding technology, including single-locus barcode, multi-locus barcoding, super-barcoding, meta-barcoding, and mini-barcoding, were illustrated. In addition, the advances in DNA barcoding, particularly identifying plant species for TCM using machine learning technology, are also reviewed. Finally, the selection process of an ideal DNA barcoding technique for accurate identification of a given TCM plant species was also outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA