Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518646

RESUMO

BACKGROUND: Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE: This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS: Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS: Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS: Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.


Assuntos
Ferroptose , Flavanonas , Ovário , Estresse Oxidativo , Placenta , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/tratamento farmacológico , Feminino , Flavanonas/farmacologia , Ferroptose/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Placenta/efeitos dos fármacos , Placenta/metabolismo , Ovário/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Scutellaria baicalensis/química , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino
2.
Environ Sci Pollut Res Int ; 28(34): 46877-46893, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254241

RESUMO

With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise
3.
BMC Complement Altern Med ; 18(1): 52, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402324

RESUMO

BACKGROUND: This study was to evaluate the effects of herbal compound 861 (Cpd861) on ski-related novel protein N (SnoN) and transforming growth factor-ß1 (TGF-ß1) /Smad signaling in rats with bile duct ligation (BDL)-induced hepatic fibrosis, and to explore the mechanisms of Cpd861 on hepatic fibrosis. METHODS: Thirty Wistar male rats were randomly divided into three groups: sham operation, BDL, and Cpd861. To induce hepatic fibrosis, BDL and Cpd861 group rats underwent bile duct ligation. Cpd861 at 9 g/kg/d or an equal volume of normal saline was administered intragastrically for 28 days. Liver injury was assessed biochemically and histologically. Protein and mRNA changes for SnoN and TGF-ß1/Smad signaling (TGF-ß1, Smad2, phosphorylated Smad2 [p-Smad2], phosphorylated Smad3 [p-Smad3], fibronectin, and collagen III) were determined by Western blotting and quantitative real-time PCR. RESULTS: BDL rats treated with Cpd861 had significantly alleviated hepatic fibrosis compared to BDL rats not receiving Cpd861 treatment. Moreover, Cpd861 decreased the expression of fibrosis-associated proteins fibronectin and collagen III in liver tissue. Cpd861 administration increased the expression of SnoN protein, did not change SnoN mRNA level, and decreased TGF-ß1, p-Smad2, and p-Smad3 protein expression compared to BDL without Cpd861 treatment. CONCLUSIONS: Cpd861 attenuates hepatic fibrosis by increasing SnoN protein expression and inhibiting the TGF-ß1/Smad signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Ductos Biliares/lesões , Ductos Biliares/cirurgia , Modelos Animais de Doenças , Imuno-Histoquímica , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Wistar , Proteínas Smad/análise , Proteínas Smad/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA