Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 93: 153745, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634743

RESUMO

BACKGROUND: Neuroinflammation plays a pivotal role in the acute progression of cerebral ischemia/reperfusion injury (I/RI). We previously reported that genistein-3'-sodium sulfonate (GSS), a derivative from the extract of the phytoestrogen genistein (Gen), protects cortical neurons against focal cerebral ischemia. However, the molecular mechanism underlying the neuroprotective effects exerted by GSS remains unclear. PURPOSE: The present study focused on the anti-inflammatory effects of GSS following I/RI in rats. STUDY DESIGN: Randomized controlled trial. METHODS: The tMCAO rat model and LPS-stimulated BV2 in vitro model were used. Longa's scare was used to observe neurological function. TTC staining and Nissl staining were used to evaluate brain injury. ELISA, qRT-PCR, Western blotting and immunofluorescent staining methods were used to detect cytokine concentration, mRNA level, protein expression and location. RESULTS: GSS treatment improves neurological function, reduces the volume of cerebral infarction, attenuates proinflammatory cytokines and inactivates the phosphorylation of JAK2 and STAT3 in I/RI rats. Furthermore, GSS increased the expression of α7nAChR. More importantly, the neuroprotective, anti-inflammatory and inhibiting JAK2/STAT3 signaling pathway effects of GSS were counteracted in the presence of alpha-bungarotoxin (α-BTX), an α7nAChR inhibitor, suggesting that α7nAChR is a potential target associated with the anti-inflammatory effects of GSS in the I/RI rats. GSS also inhibited BV2 cells from releasing IL-1ß via the α7nAChR pathway after LPS stimulation. CONCLUSION: GSS protects against cerebral I/RI through the expression of α7nAChR and inhibition of the JAK2/STAT3 pathway. Our findings provide evidence for the role of the cholinergic anti-inflammatory pathway in neuroinflammation and uncover a potential novel mechanism for GSS treatment in ischemic stroke. The downstream signals of GSS, α7nAChR- JAK2/STAT3 could also be potential targets for the treatment of I/RI.


Assuntos
Isquemia Encefálica , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Genisteína/farmacologia , Janus Quinase 2/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sódio , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA