Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1147718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090714

RESUMO

The system physiology approaches that emerge in western countries in recent years echo the holistic view of ancient Traditional Chinese Medicine (TCM) practices that deal with the root, rather than only the symptoms of diseases. Particularly, TCM practices, including acupuncture, emphasize the mobilization of self-healing mechanisms to bring back body homeostasis. Acupuncture has been practiced for over two thousand years to modulate body physiology via stimulation at specific body regions (acupoints). With the development of various research on acupuncture therapy, its regulatory effect on the immune system has been gradually recognized, especially on immunological diseases, including infectious and allergic diseases. In this study, we reviewed the immunomodulatory mechanism of acupuncture and systematically integrates existing research to respectively elucidate the modulatory mechanisms of acupuncture on the innate immune system, adaptive immune system, and well-known neuroanatomical mechanisms, including intact somatosensory-autonomic reflex pathway. With the advances made in recent systems physiology studies, we now have a great opportunity to gain insight into how acupuncture modulates immunity, and subsequently improves its efficacy.


Assuntos
Terapia por Acupuntura , Acupuntura , Hipersensibilidade , Humanos , Medicina Tradicional Chinesa , Pontos de Acupuntura , Hipersensibilidade/terapia
3.
Nature ; 598(7882): 641-645, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646018

RESUMO

Somatosensory autonomic reflexes allow electroacupuncture stimulation (ES) to modulate body physiology at distant sites1-6 (for example, suppressing severe systemic inflammation6-9). Since the 1970s, an emerging organizational rule about these reflexes has been the presence of body-region specificity1-6. For example, ES at the hindlimb ST36 acupoint but not the abdominal ST25 acupoint can drive the vagal-adrenal anti-inflammatory axis in mice10,11. The neuroanatomical basis of this somatotopic organization is, however, unknown. Here we show that PROKR2Cre-marked sensory neurons, which innervate the deep hindlimb fascia (for example, the periosteum) but not abdominal fascia (for example, the peritoneum), are crucial for driving the vagal-adrenal axis. Low-intensity ES at the ST36 site in mice with ablated PROKR2Cre-marked sensory neurons failed to activate hindbrain vagal efferent neurons or to drive catecholamine release from adrenal glands. As a result, ES no longer suppressed systemic inflammation induced by bacterial endotoxins. By contrast, spinal sympathetic reflexes evoked by high-intensity ES at both ST25 and ST36 sites were unaffected. We also show that optogenetic stimulation of PROKR2Cre-marked nerve terminals through the ST36 site is sufficient to drive the vagal-adrenal axis but not sympathetic reflexes. Furthermore, the distribution patterns of PROKR2Cre nerve fibres can retrospectively predict body regions at which low-intensity ES will or will not effectively produce anti-inflammatory effects. Our studies provide a neuroanatomical basis for the selectivity and specificity of acupoints in driving specific autonomic pathways.


Assuntos
Glândulas Suprarrenais/fisiologia , Sistema Nervoso Autônomo , Eletroacupuntura , Nervo Vago/fisiologia , Pontos de Acupuntura , Animais , Membro Posterior/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo
4.
Neuron ; 108(3): 436-450.e7, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791039

RESUMO

The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY+ noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY+ adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY+ splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.


Assuntos
Eletroacupuntura , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
PLoS One ; 10(6): e0129576, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067287

RESUMO

Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.


Assuntos
Eletroacupuntura , Interleucina-33/metabolismo , Sistema de Sinalização das MAP Quinases , Neuralgia/terapia , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Formaldeído/toxicidade , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/uso terapêutico , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Receptores de Interleucina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-26064176

RESUMO

Acupuncture or electroacupuncture (EA) has been demonstrated to have a powerful antihypernociceptive effect on inflammatory pain. The attenuation of G protein-coupled receptor kinase 2 (GRK2) in spinal cord and peripheral nociceptor has been widely acknowledged to promote the transition from acute to chronic pain and to facilitate the nociceptive progress. This study was designed to investigate the possible role of spinal GRK2 in EA antiallodynic in a rat model with complete Freund's adjuvant (CFA) induced inflammatory pain. EA was applied to ST36 ("Zusanli") and BL60 ("Kunlun") one day after CFA injection. Single EA treatment at day 1 after CFA injection remarkably alleviated CFA induced mechanical allodynia two hours after EA. Repeated EA displayed significant antiallodynic effect from 2nd EA treatment and a persistent effect was observed during the rest of treatments. However, downregulation of spinal GRK2 by intrathecal exposure of GRK2 antisense 30 mins after EA treatment completely eliminated both the transient and persistent antiallodynic effect by EA treatment. These pieces of data demonstrated that the spinal GRK2 played an important role in EA antiallodynia on inflammatory pain.

7.
Artigo em Inglês | MEDLINE | ID: mdl-24795763

RESUMO

Growing evidence indicates that chronic neuropathic pain is frequently accompanied by an array of psychiatric diseases, such as depression and anxiety. Electroacupuncture (EA), as one therapy of traditional Chinese medicine, has displayed potent antidepressant-like effects in numerous clinical studies. The present study was designed to examine the possible effects of EA on the depressive and anxiety disorders induced by neuropathic pain. A classic rat model of neuropathic pain was produced by chronic constriction injury (CCI) of the sciatic nerve. EA was performed on acupoints "Bai-Hui" (GV20) and unilateral "Yang-Ling-Quan" (GB34). The antidepressive and anxiolytic effects of EA treatment were analyzed using the forced swimming test (FST) and the elevated plus maze (EPM) test, respectively. CCI resulted in remarkable depression- and anxiety-like behaviors, whereas the chronic EA treatment significantly improved the behavioral deficits of CCI rats. Moreover, the phosphorylation level of the NMDA receptor type 1 (NR1) subunit was decreased in the hippocampus of CCI rats. Intriguingly, continuous EA treatment effectively blocked this decrease in the levels of pNR1. These results suggested that EA has antidepressive and anxiolytic effects on rats with neuropathic pain and that this might be associated with restoring the phosphorylation of NR1 in the hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA