Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471317

RESUMO

BACKGROUND: Ginsenosides have received increased amounts of attention due to their ability to modulate the intestinal flora, which may subsequently alleviate alcoholic liver disease (ALD). The effects of ginseng fermentation solution (GFS) on the gut microbiota and metabolism in ALD patients have not been explored. PURPOSE: This research aimed to explore the regulatory effect of GFS on ALD both in vitro and in vivo. METHOD: This study assessed the anti-ALD efficacy of GFS using an LO2 cell model and a zebrafish model. Untargeted metabolomics was used for differentially abundant metabolite analysis, and high-throughput 16S rRNA sequencing was used to examine the effect of GFS on ALD. RESULTS: The LO2 cell line experiments demonstrated that GFS effectively mitigated alcohol-induced oxidative stress and reduced apoptosis by upregulating PI3K and Bcl-2 expression and decreasing the levels of malondialdehyde, total cholesterol, and triglycerides. In zebrafish, GFS improved morphological and physiological parameters and diminished oxidative stress-induced ALD. Meanwhile, the results from Western blotting indicated that GFS enhanced the expression of PI3K, Akt, and Bcl-2 proteins while reducing Bax protein expression, thereby ameliorating the ALD model in zebrafish. Metabolomics data revealed significant changes in a total of 46 potential biomarkers. Among them, metabolites such as prostaglandin F2 alpha belong to arachidonic acid metabolism. In addition, GFS also partly reversed the imbalance of gut microbiota composition caused by alcohol. At the genus level, alcohol consumption elevated the presence of Flectobacillus, Curvibacter, among others, and diminished Elizabethkingia within the intestinal microbes of zebrafish. Conversely, GFS reversed these effects, notably enhancing the abundance of Proteobacteria and Archaea. Correlation analyses further indicated a significant negative correlation between prostaglandin F2 alpha, 11,14,15-THETA, Taurocholic acid and Curvibacter. CONCLUSION: This study highlights a novel mechanism by which GFS modulates anti-ALD activity through the PI3K/Akt signalling pathway by influencing the intestinal flora-metabolite axis. These results indicate the potential of GFS as a functional food for ALD treatment via modulation of the gut flora.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Panax , Animais , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Hepatopatias Alcoólicas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
2.
Regen Biomater ; 11: rbad114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313825

RESUMO

The presence of excessive reactive oxygen species (ROS) at a skin wound site is an important factor affecting wound healing. ROS scavenging, which regulates the ROS microenvironment, is essential for wound healing. In this study, we used novel electrospun PCL/gelatin/arbutin (PCL/G/A) nanofibrous membranes as wound dressings, with PCL/gelatin (PCL/G) as the backbone, and plant-derived arbutin (hydroquinone-ß-d-glucopyranoside, ARB) as an effective antioxidant that scavenges ROS and inhibits bacterial infection in wounds. The loading of ARB increased the mechanical strength of the nanofibres, with a water vapour transmission rate of more than 2500 g/(m2 × 24 h), and the water contact angle decreased, indicating that hydrophilicity and air permeability were significantly improved. Drug release and degradation experiments showed that the nanofibre membrane controlled the drug release and exhibited favourable degradability. Haemolysis experiments showed that the PCL/G/A nanofibre membranes were biocompatible, and DPPH and ABTS+ radical scavenging experiments indicated that PCL/G/A could effectively scavenge ROS to reflect the antioxidant activity. In addition, haemostasis experiments showed that PCL/G/A had good haemostatic effects in vitro and in vivo. In vivo animal wound closure and histological staining experiments demonstrated that PCL/G/A increased collagen deposition and remodelled epithelial tissue regeneration while showing good in vivo biocompatibility and non-toxicity. In conclusion, we successfully prepared a multifunctional wound dressing, PCL/G/A, for skin wound healing and investigated its potential role in wound healing, which is beneficial for the clinical translational application of phytomedicines.

3.
Ultrason Sonochem ; 101: 106696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988957

RESUMO

To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Antioxidantes/química , Lycium/química , Lycium/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
4.
Ultrason Sonochem ; 98: 106509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406542

RESUMO

In this study, the slit dual-frequency ultrasound-assisted pulping of fresh Lycium barbarum fruit was optimized to improve the dissolution of polysaccharides. The microscopic mechanism of polysaccharide dissolution was explored through establishing polysaccharides dissolution kinetics model and visualizing the multi-physical fields during ultrasonic process, and an in situ real-time monitoring model was established by the relationship between the chemical value and spectral information collected by near-infrared spectroscopy. The results showed that, under optimal conditions, treatment with ultrasound (28-33 kHz, 250 W, 30 min) not only significantly promoted the dissolution rate of polysaccharides in Lycium barbarum pulp (LBPPs, increased by 43.64 %, p < 0.01), reduced its molecular weight, but also improved the arabinose molar ratio, the uniformity of polysaccharide particles, and the antioxidant activity of LBPPs. Correlation analysis indicated that ultrasonic treatment is closely related to LBPPs content, particle size and scavenging capacity against superoxide anion radicals (ptotal sugar content < 0.01, pparticle size < 0.05 and psuperoxide anion scavenging < 0.05). Moreover, the in situ real-time monitoring model for the pulping process could quantitatively predict LBPPs dissolution rate and its superoxide anion radical scavenging capacity with good calibration and prediction performance (Rc = 0.9841, RMSECV = 0.0873, Rp = 0.9772, RMSEP = 0.0530; Rc = 0.9874, RMSECV = 0.1246, Rp = 0.9868, RMSEP = 0.0665). These results indicated that slit dual-frequency ultrasound has great potential in improving the quality of Lycium barbarum pulp, which may provide theoretical support for the industrial development of intelligent systems for polysaccharides preparation.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Lycium/química , Superóxidos , Frutas/química , Solubilidade , Polissacarídeos/química , Medicamentos de Ervas Chinesas/análise
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37314321

RESUMO

This study aimed to investigate the impact of compound organic acid (COA) and chlortetracycline (CTC) on serum biochemical parameters, intestinal health, and growth performance of weaned piglets. Twenty-four piglets (24 d of age) were randomly allocated into three treatments with eight replicate pens (one piglet per pen). Feed the basal diet or a diet containing 3,000 mg/kg COA or 75 mg/kg CTC, respectively. Results showed that both COA and CTC significantly increased average daily gain and reduced diarrhea rates (P < 0.05). They also upregulated serum total antioxidant capacity and downregulated serum interleukin (IL-10) levels (P < 0.05), increased crude protein digestibility and propionic acid concentration in the colon, and decreased spermidine and putrescine contents (P < 0.05). Intestinal microbiota analysis revealed that both COA and CTC increased the Shannon and Chao1 index and decreased the relative abundance of Blautia and Roseburia, but increased the relative abundance of Clostridium-sensu-stricto-1. Correlation analysis indicated that Clostridium-sensu-stricto-1 may be closely related to inflammation levels and microbial metabolites in piglets. Based on the results, COA may be a potential substitute for CTC to reduce antibiotic use and biogenic amine emission while improving piglet growth and intestinal health.


Weaned piglets face challenges due to their underdeveloped digestive system, resulting in high gastrointestinal tract pH and insufficient enzyme secretion. To address this issue, we found supplementing piglet diets with 3,000 mg/kg of compound organic acid positively impacted the immune and antioxidant levels of piglets, promoted their intestinal health, improved nutrient digestibility, and enhanced their overall growth performance. These benefits were attributed to the regulation of intestinal microbiota by the compound organic acid. By improving piglet health and growth, this research offers a potential solution to the challenges of piglet weaning stress.


Assuntos
Antioxidantes , Microbioma Gastrointestinal , Animais , Suínos , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Intestinos , Dieta/veterinária
6.
Pharm Biol ; 60(1): 1840-1849, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200648

RESUMO

CONTEXT: Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao) is a traditional Chinese herbal medicine that is capable of anti-analgesic and anti-inflammatory effects. Bullatine A (BA) is one of the major active ingredients of this plant, and most of the previous studies reported that it has anti-analgesic effects. However, the mechanism of BA anti-inflammatory remains unclear. OBJECTIVE: This study investigates the anti-inflammatory activities of BA, both in vitro and in vivo, and elucidates its mechanism. MATERIALS AND METHODS: In vitro, BA (10, 20, 40 and 80 µM) was added to 1 µg/mL of lipopolysaccharide (LPS)-activated microglia BV2 cells and immortalized murine bone marrow-derived macrophages, respectively. After 6 h, the mRNA and protein levels of inflammatory factors were determined by real-time quantitative PCR and western blotting. In vivo, C57BL/6 mice were randomly divided into control, model (5 mg/kg dose of LPS) and treated groups (LPS with 5, 10 or 20 mg/kg dose of BA) to evaluate the anti-inflammatory efficacy of BA. RESULTS: BA significantly inhibited LPS-induced expression of inflammatory factors, such as IL-1ß, IL-6, TNF-α, inducible nitric oxide synthase (iNOS) and COX-2. Further investigations showed that BA reduced the translocation of NF-κB p65 (38.5%, p < 0.01). BA also reduced the phosphorylation of c-Jun N-terminal kinase (JNK) (11.2%, p < 0.05) and reactive oxygen species (ROS) generation (24.2%, p < 0.01). Furthermore, BA treatment attenuated the LPS-primed inflammatory response and liver and lung damage in vivo. CONCLUSIONS: BA can inhibit the inflammatory response in part through the ROS/JNK/NF-κB signalling pathway, providing a theoretical basis for the clinical application of BA in the treatment of periphery inflammatory diseases.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Alcaloides , Animais , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Diterpenos , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Pharmacol ; 12: 748193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671261

RESUMO

Most diabetic patients develop diabetic peripheral neuropathy (DPN). DPN is related to the increase of inflammatory cells in peripheral nerves, abnormal cytokine expression, oxidative stress, ischemia ,and pro-inflammatory changes in bone marrow. We summarized the progress of immune-inflammatory mechanism and treatment of DPN in recent years. Immune inflammatory mechanisms include TNF-α, HSPs, PARP, other inflammatory factors, and the effect of immune cells on DPN. Treatment includes tricyclic antidepressants and other drug therapy, immune and molecular therapy, and non-drug therapy such as exercise therapy, electrotherapy, acupuncture, and moxibustion. The pathogenesis of DPN is complex. In addition to strictly controlling blood glucose, its treatment should also start from other ways, explore more effective and specific treatment schemes for various causes of DPN, and find new targets for treatment will be the direction of developing DPN therapeutic drugs in the future.

8.
Front Plant Sci ; 12: 643971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868341

RESUMO

Huanglongbing (HLB) is a destructive citrus bacterial disease caused by Candidatus Liberibacter asiaticus (Ca.Las) and cannot be cured by current pesticides. Root lesion and Tylenchulus semipenetrans juveniles were observed in HLB-affected citrus tree roots. We hypothesize that root treatment with fosthiazate (FOS) and Cupric-Ammonium Complex (CAC) will improve the root growth and inhibit HLB. CAC is a broad spectrum fungicide and can promote growth of crops. FOS kills Tylenchulus semipenetrans and protects roots from damage by harmful bacteria such as Ca.Las. After 90 days of combination treatment of FOS and CAC through root drenches, the citrus grew new roots and its leaves changed their color to green. The inhibition rate of Ca.Las reached more than 90%. During treatment process, the chlorophyll content and the root vitality increased 396 and 151%, respectively, and starch accumulation decreased by 88%. Transmission electron microscopy (TEM) and plant tissue dyeing experiments showed that more irregular swollen starch granules existed in the chloroplast thylakoid system of the HLB-infected leaves. This is due to the blocking of their secretory tissue by starch. TEM and flow cytometry experiments in vitro showed the synergistic effects of FOS and CAC. A transcriptome analysis revealed that the treatment induced the differential expression of the genes which involved 103 metabolic pathways. These results suggested that the cocktail treatment of FOS and CAC may effectively kill various pathogens including Ca.Las on citrus root and thus effectively control HLB.

9.
Phys Chem Chem Phys ; 21(42): 23501-23513, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31617551

RESUMO

YIV-906 (formally PHY906, KD018) is a four-herb formulation that is currently being developed to improve the therapeutic index and ameliorate the side effects of many chemotherapeutic drugs including sorafenib, irinotecan, and capecitabine. However, as a promising anti-cancer adjuvant, the molecular mechanism of action of YIV-906 remains unrevealed due to its multi-component and multi-target features. Since YIV-906 has been shown to induce apoptosis and autophagy in cancer cells through modulating the negative regulators of ERK1/2, namely DUSPs, it is of great interest to elucidate the key components that cause the therapeutic effect of YIV-906. In this work, we investigated the mechanism of YIV-906 inhibiting DUSPs, using a broad spectrum of molecular modelling techniques, including molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. In total, MD simulations and binding free energy calculations were performed for 99 DUSP-ligand complexes. We found that some herbal components or their metabolites could inhibit DUSPs. Based on the docking scores and binding free energies, the sulfation and glucuronidation metabolites of the S ingredient in YIV-906 play a leading role in inhibiting DUSPs, although several original herbal chemicals with carboxyl groups from the P and Z ingredients also make contributions to this inhibitory effect. It is not a surprise that the electrostatic interaction plays the dominant role in the ligand binding process, given the fact that several charged residues reside in the binding pockets of DUSPs. Our MD simulation results demonstrate that the sulfate moieties and carboxyl moieties of the advantageous ligands from YIV-906 can occupy the enzymes' catalytic sites, mimicking the endogenous phosphate substrates of DUSPs. As such, the ligand binding can inhibit the association of DUSPs and ERK1/2, which in turn reduces the dephosphorylation of ERK1/2 and causes cell cycle arrest in the tumor. Our modelling study provides useful insights into the rational design of highly potent anti-cancer drugs targeting DUSPs. Finally, we have demonstrated that multi-scale molecular modelling techniques are able to elucidate molecular mechanisms involving complex molecular systems.


Assuntos
Antineoplásicos Fitogênicos/química , Medicamentos de Ervas Chinesas/química , Antineoplásicos Fitogênicos/metabolismo , Sítios de Ligação , Domínio Catalítico , Medicamentos de Ervas Chinesas/metabolismo , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Fosfatases de Especificidade Dupla/metabolismo , Humanos , Ligantes , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA