Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Pharm Biotechnol ; 25(17): 2186-2199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347793

RESUMO

Cardiovascular Disease (CVD) is the leading cause of morbidity and death worldwide and has become a global public health problem. Traditional Chinese medicine (TCM) has been used in China to treat CVD and achieved promising results. Therefore, TCM has aroused significant interest among pharmacologists and medical practitioners. Previous research showed that TCM can regulate the occurrence and development of atherosclerosis (AS), ischemic heart disease, heart failure, myocardial injury, and myocardial fibrosis by inhibiting vascular endothelial injury, inflammation, oxidant stress, ischemia-reperfusion injury, and myocardial remodeling. It is well-known that TCM has the characteristics of multi-component, multi-pathway, and multitarget. Here, we systematically review the bioactive components, pharmacological effects, and clinical application of TCM in preventing and treating CVD.


Assuntos
Doenças Cardiovasculares , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
2.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787185

RESUMO

Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.


Assuntos
Hipotálamo , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Homeostase , Glucose/metabolismo , Ácidos e Sais Biliares/metabolismo , Ingestão de Alimentos
3.
Mol Metab ; 8: 37-50, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290621

RESUMO

OBJECTIVE: Bile acids have been implicated as important regulators of glucose metabolism via activation of FXR and GPBAR1. We have previously shown that FGF19 can modulate glucose handling by suppressing the activity of hypothalamic AGRP/NPY neurons. As bile acids stimulate the release of FGF19/FGF15 into the circulation, we pursued the potential of bile acids to improve glucose tolerance via a gut-brain axis involving FXR and FGF15/FGF19 within enterocytes and FGF receptors on hypothalamic AGRP/NPY neurons. METHODS: A 5-day gavage of taurocholic acid, mirroring our previous protocol of a 5-day FGF19 treatment, was performed. Oral glucose tolerance tests in mice with genetic manipulations of FGF signaling and melanocortin signaling were used to define a gut-brain axis responsive to bile acids. RESULTS: The taurocholic acid gavage led to increased serum concentrations of taurocholic acid as well as increases of FGF15 mRNA in the ileum and improved oral glucose tolerance in obese (ob/ob) mice. In contrast, lithocholic acid, an FXR antagonist but a potent agonist for GPBAR1, did not improve glucose tolerance. The positive response to taurocholic acid is dependent upon an intact melanocortinergic system as obese MC4R-null mice or ob/ob mice without AGRP did not show improvements in glucose tolerance after taurocholate gavage. We also tested the FGF receptor isoform necessary for the bile acid response, using AGRP:Fgfr1-/- and AGRP:Fgfr2-/- mice. While the absence of FGFR1 in AGRP/NPY neurons did not alter glucose tolerance after taurocholate gavage, manipulations of Fgfr2 caused bidirectional changes depending upon the experimental model. We hypothesized the existence of an endogenous hypothalamic FGF, most likely FGF17, that acted as a chronic activator of AGRP/NPY neurons. We developed two short peptides based on FGF8 and FGF17 that should antagonize FGF17 action. Both of these peptides improved glucose homeostasis after a 4-day course of central and peripheral injections. Significantly, daily average blood glucose from continuous glucose monitoring was reduced in all tested animals but glucose concentrations remained in the euglycemia range. CONCLUSIONS: We have defined a gut-brain axis that regulates glucose metabolism mediated by antagonistic fibroblast growth factors. From the intestine, bile acids stimulate FGF15 secretion, leading to activation of the FGF receptors in hypothalamic AGRP/NPY neurons. FGF receptor intracellular signaling subsequently silences AGRP/NPY neurons, leading to improvements of glucose tolerance that are likely mediated by the autonomic nervous system. Finally, short peptides that antagonize homodimeric FGF receptor signaling within the hypothalamus have beneficial effects on glucose homeostasis without inducing hypoglycemia. These peptides could provide a new mode of regulating glucose metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Animais , Hipotálamo/fisiologia , Camundongos , Camundongos Obesos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
J Neurosci ; 32(29): 9870-7, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815502

RESUMO

Thioredoxin interacting protein (TXNIP) has recently been described as a key regulator of energy metabolism through pleiotropic actions that include nutrient sensing in the mediobasal hypothalamus (MBH). However, the role of TXNIP in neurochemically specific hypothalamic subpopulations and the circuits downstream from MBH TXNIP engaged to regulate energy homeostasis remain unexplored. To evaluate the metabolic role of TXNIP activity specifically within arcuate Agrp neurons, we generated Agrp-specific TXNIP gain-of-function and loss-of-function mouse models using Agrp-Ires-cre mice, TXNIP (flox/flox) mice, and a lentivector expressing the human TXNIP isoform conditionally in the presence of Cre recombinase. Overexpression of TXNIP in Agrp neurons predisposed to diet-induced obesity and adipose tissue storage by decreasing energy expenditure and spontaneous locomotion, without affecting food intake. Conversely, Agrp neuronal TXNIP deletion protected against diet-induced obesity and adipose tissue storage by increasing energy expenditure and spontaneous locomotion, also without affecting food intake. TXNIP overexpression in Agrp neurons did not primarily affect glycemic control, whereas deletion of TXNIP in Agrp neurons improved fasting glucose levels and glucose tolerance independently of its effects on body weight and adiposity. Bidirectional manipulation of TXNIP expression induced reciprocal changes in central leptin sensitivity and the neural regulation of lipolysis. Together, these results identify a critical role for TXNIP in Agrp neurons in mediating diet-induced obesity through the regulation of energy expenditure and adipose tissue metabolism, independently of food intake. They also reveal a previously unidentified role for Agrp neurons in the brain-adipose axis.


Assuntos
Adiposidade/fisiologia , Proteína Relacionada com Agouti/metabolismo , Proteínas de Transporte/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Tiorredoxinas/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Glicemia/metabolismo , Proteínas de Transporte/genética , Dieta , Ingestão de Alimentos/fisiologia , Homeostase/fisiologia , Hipotálamo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Tiorredoxinas/genética
5.
J Clin Invest ; 115(12): 3484-93, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16284652

RESUMO

We have generated mice that carry a neuron-specific leptin receptor (LEPR) transgene whose expression is driven by the rat synapsin I promoter synapsin-LEPR B (SYN-LEPR-B). We have also generated mice that are compound hemizygotes for the transgenes SYN-LEPR-B and neuron-specific enolase-LEPR B (NSE-LEPR-B). We observed a degree of correction in db/db mice that are hemizygous (Syn db/db) and homozygous (Syn/Syn db/db) for the SYN-LEPR-B transgene similar to that previously reported for the NSE-LEPR-B transgene. We also show complete correction of the obesity and related phenotypes of db/db mice that are hemizygous for both NSE-LEPR-B and SYN-LEPR-B transgenes (Nse+Syn db/db). Body composition, insulin sensitivity, and cold tolerance were completely normalized in Nse+Syn db/db mice at 12 weeks of age compared with lean controls. In situ hybridization for LEPR B isoform expression in Nse+Syn db/db mice showed robust expression in the energy homeostasis-relevant regions of the hypothalamus. Expression of 3 neuropeptide genes, agouti-related peptide (Agrp), neuropeptide Y (Npy), and proopiomelanocortin (Pomc), was fully normalized in dual transgenic db/db mice. The 2 transgenes in concert conferred normal fertility to male and female db/db mice. Male mice with partial peripheral deletion of Lepr, induced in the periweaning phase, did not show alterations in body composition or mass. In summary, we show that brain-specific leptin signaling is sufficient to reverse the obesity, diabetes, and infertility of db/db mice.


Assuntos
Diabetes Mellitus/terapia , Terapia Genética/métodos , Infertilidade/terapia , Neurônios/metabolismo , Obesidade/terapia , Receptores de Superfície Celular/genética , Proteína Relacionada com Agouti , Alelos , Animais , Glicemia/metabolismo , Composição Corporal , Peso Corporal , Temperatura Baixa , DNA Complementar/metabolismo , Diabetes Mellitus/genética , Feminino , Fertilidade , Regulação da Expressão Gênica , Genótipo , Glucose/metabolismo , Homeostase , Homozigoto , Hipotálamo/patologia , Hibridização In Situ , Infertilidade/genética , Infertilidade Feminina/terapia , Infertilidade Masculina/terapia , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Obesidade/genética , Peptídeos/química , Fenótipo , Fosfopiruvato Hidratase/genética , Reação em Cadeia da Polimerase , Pró-Opiomelanocortina/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas , Proteínas/genética , Ratos , Receptores para Leptina , Transdução de Sinais , Sinapsinas/genética , Fatores de Tempo , Distribuição Tecidual , Transgenes
6.
Am J Physiol Endocrinol Metab ; 289(3): E403-11, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15870101

RESUMO

Leptin signaling in the brain regulates energy intake and expenditure. To test the degree of functional neuronal leptin signaling required for the maintenance of body composition, fertility, and cold tolerance, transgenic mice expressing Cre in neurons (CaMKIIalpha-Cre) were crossed to mice carrying a floxed leptin receptor (Lepr) allele to generate mice with neuron-specific deletion of Lepr in approximately 50% (C F/F mice) and approximately 75% (C Delta17/F mice) of hypothalamic neurons. Leptin receptor (LEPR)-deficient mice (Delta17/Delta17) with heat-shock-Cre-mediated global Lepr deletion served as obese controls. At 16 wk, male C F/F, C Delta17/F, and Delta17/Delta17 mice were 13.2 (P < 0.05), 45.0, and 55.9% (P < 0.001) heavier, respectively, than lean controls, whereas females showed 31.6, 68.8, and 160.7% increases in body mass (P < 0.001). Significant increases in total fat mass (C F/F: P < 0.01; C Delta17/F and Delta17/Delta17:P < 0.001 vs. sex-matched, lean controls), and serum leptin concentrations (P < 0.001 vs. controls) were present in proportion to Lepr deletion. Male C Delta17/F mice had significant elevations in basal serum insulin concentrations (P < 0.001 vs. controls) and were glucose intolerant, as measured by glucose tolerance test (AUC P < 0.01 vs. controls). In contrast with previous observations in mice null for LEPR signaling, C F/F and C Delta17/F mice were fertile and cold tolerant. These findings support the hypothesis that body weight, adiposity, serum leptin concentrations, and glucose intolerance are proportional to hypothalamic LEPR deficiency. However, fertility and cold tolerance remain intact unless hypothalamic LEPR deficiency is complete.


Assuntos
Adaptação Fisiológica/fisiologia , Temperatura Baixa , Diabetes Mellitus Experimental/fisiopatologia , Fertilidade/fisiologia , Receptores de Superfície Celular/genética , Tecido Adiposo Marrom/fisiologia , Animais , Arginina Vasopressina/genética , Peso Corporal , DNA Complementar , Diabetes Mellitus Experimental/genética , Ingestão de Alimentos , Feminino , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/fisiologia , Neuropeptídeo Y/genética , Obesidade/genética , Obesidade/fisiopatologia , Pró-Opiomelanocortina/genética , Receptores para Leptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA