RESUMO
We designed a biodegradable hybrid nanostructure for near-infrared (NIR)-induced photodynamic therapy (PDT) using an ultrasmall upconversion (UC) phosphor (ß-NaYF4:Yb3+, Er3+ nanoparticle: NPs) and a hydrocarbonized rose bengal (C18RB) dye, a hydrophobized rose bengal (RB) derivative. The UC-NPs were encapsulated along with C18RB in the hydrophobic core of the micelle composed of poly(ethylene glycol) (PEG)-block-poly(ε-caprolactone) (PCL). The UC-NPs were well shielded from the aqueous environment, owing to the encapsulation in the hydrophobic PCL core, to efficiently emit green UC luminescence by avoiding the quenching by the hydroxyl groups. The hydrophobic part of C18 of C18RB worked well to be involved in the PCL core and located RB on the surface of the PCL core, making the efficient absorption of green light and the emission of singlet oxygen to surrounding water possible. Moreover, as the location is covered by PEG, the direct contact of RB to cells is prohibited to avoid their irradiation-free toxic effect on the cells. The hybrid nanostructure proved to be degradable by the hydrolysis of PEG-b-PCL. This degradation potentially results in renal excretion by the decomposition of the nanostructure into sub-10 nm size particles and makes them viable for clinical uses. These nanostructures can potentially be used for PDT of cancer in deep tissues.
Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Substâncias Luminescentes/farmacologia , Nanoestruturas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Raios Infravermelhos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/química , Teste de Materiais , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/químicaRESUMO
Radiotherapy (RT) is one of the most commonly employed approaches in the treatment of malignant tumors and is often combined with radiosensitizers to enhance the therapeutic efficacy for clinical use. For developing a smart therapeutic strategy leveraging local tissue response to photo-mediated reactions and the combination of multiple treatment modalities involving ROS-induced sensitization of RT, a novel nanophototherapeutic system has been developed. The nanotherapeutics prepared from the assembly of poly (thiodiethylene malonate) (PSDEM) and PEG-PSDEM-PEG and loaded with suberoylanilide hydroxamic acid (SAHA) employed as the RT sensitizer and indocyanine green (ICG) as the photothermal/photodynamic agent, demonstrated the capability of undergoing structural change and releasing therapeutic payloads in response to near-infrared irradiation and X-ray radiotherapy. With highly localized and controllable reactions within the tumor site, the reactive oxygen species (ROS)-triggered SAHA unloading and the hyperthermia-induced vascular permeability of oxygen led to a significant sensitization of the target tissue in RT, which, in turn, led to the promotion of therapeutic effect in conjunction with photodynamic/photothermal therapies (PDT/PTT). In vitro studies demonstrated the damage in intracellular DNA double strands and the inhibition of cell proliferation in 4T1 breast cancer cells treated with ROS-induced sensitized RT. A substantial reduction in cell viability was also observed owing to the effects of the combination of photo-mediated treatments with sensitized RT compared to the effects of RT administration alone. Complete eradication of the primary tumor and the inhibition of lung metastasis was observed in five of six orthotopic 4T1 breast cancer-bearing mice subjected to combined PDT/PTT in nanophototherapeutics with ROS-induced sensitized RT at a low dosage (6 Gy), leading to the prominent survival fraction of ca. 83% over 60 days.
Assuntos
Neoplasias da Mama , Hipertermia Induzida , Fotoquimioterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Verde de Indocianina , Camundongos , Fototerapia , Espécies Reativas de OxigênioRESUMO
Although oral formulations of anticancer chemotherapies are clinically available, the therapeutic action relies mostly on drug absorption, being inevitably accompanied with systemic side effects. It is thus desirable to develop oral therapy systems for the local treatment of colon cancers featured with highly selective delivery to cancer cells and minimized systemic drug absorption. The present study demonstrates the effective accumulation and cell uptake of the doxorubicin and superparamagnetic iron oxide nanoparticles-loaded solid lipid nanoparticle (SLN) delivery system for chemo/magnetothermal combination therapy at tumors by hierarchical targeting of folate (FA) and dextran coated on SLN surfaces in a sequential layer-by-layer manner. Both the in vitro and in vivo characterizations strongly confirmed that the dextran shells on SLN surfaces not only retarded the cellular transport of the FA-coated SLNs by the proton-coupled FA transporter on brush border membranes in small intestine, but also enhanced the particle residence in colon by specific association with dextranase. The enzymatic degradation and removal of dextran coating led to the exposure of the FA residues, thereby further facilitating the cellular-level targeting and uptake of the SLNs by the receptor-mediated endocytosis. The evaluation of the in vivo antitumor efficacy of the hierarchically targetable SLN therapy system by oral administration showed the effective inhibition of primary colon tumors and peritoneal metastasis in terms of the ascites volume and tumor nodule number and size, along with the absence of systemic side effects.
Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias do Colo/terapia , Doxorrubicina/uso terapêutico , Nanopartículas/uso terapêutico , Polissacarídeos/uso terapêutico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Ácido Fólico/uso terapêutico , Hipertermia Induzida/métodos , Lipídeos/química , Lipídeos/uso terapêutico , Camundongos , Nanopartículas/química , Polissacarídeos/químicaRESUMO
Therapeutic efficacy of glioblastoma multiforme (GBM) is often severely limited by poor penetration of therapeutics through blood-brain barrier (BBB) into brain tissues and lack of tumor targeting. In this regard, a functionalized upconversion nanoparticle (UCNP)-based delivery system which can target brain tumor and convert deep tissue-penetrating near-infrared (NIR) light into visible light for precise phototherapies on brain tumor was developed in this work. Methods: The UCNP-based phototherapy delivery system was acquired by assembly of oleic acid-coated UCNPs with angiopep-2/cholesterol-conjugated poly(ethylene glycol) and the hydrophobic photosensitizers. The hybrid nanoparticles (ANG-IMNPs) were characterized by DLS, TEM, UV/vis and fluorescence spectrophotometer. Cellular uptake was examined by laser scanning confocal microscopy and flow cytometry. The PDT/PTT effect of ANG-IMNPs was evaluated using MTT assay. Tumor accumulation of NPs was determined by a non-invasive in vivo imaging system (IVIS). The in vivo anti-glioma effect of ANG-IMNPs was evaluated by immunohistochemical (IHC) examination of tumor tissues and Kaplan-Meier survival analysis. Results: In vitro data demonstrated enhanced uptake of ANG-IMNPs by murine astrocytoma cells (ALTS1C1) and pronounced cytotoxicity by combined NIR-triggered PDT and PTT. In consistence with the increased penetration of ANG-IMNPs through endothelial monolayer in vitro, the NPs have also shown significantly enhanced accumulation at brain tumor by IVIS. The IHC tissue examination confirmed prominent apoptotic and necrotic effects on tumor cells in mice receiving targeted dual photo-based therapies, which also led to enhanced median survival (24 days) as compared to the NP treatment without angiopep-2 (14 days). Conclusion: In vitro and in vivo data strongly indicate that the ANG-IMNPs were capable of selectively delivering dual photosensitizers to brain astrocytoma tumors for effective PDT/PTT in conjugation with a substantially improved median survival. The therapeutic efficacy of ANG-IMNPs demonstrated in this study suggests their potential in overcoming BBB and establishing an effective treatment against GBM.
Assuntos
Neoplasias Encefálicas/terapia , Sistemas de Liberação de Medicamentos , Glioblastoma/terapia , Hipertermia Induzida , Nanopartículas/uso terapêutico , Fotoquimioterapia , Fototerapia , Animais , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/ultraestrutura , Oligopeptídeos/química , Peptídeos Cíclicos , Somatostatina/análogos & derivados , Somatostatina/química , Temperatura , Distribuição TecidualRESUMO
In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 µM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm(3) in volume as compared with the free DOX treatment group, 1,140 mm(3), and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm(3). Analysis of the body weight of nude mice and the histology of organs and tumor after the administration of DOX-loaded SLNs show that the SLNs have no observable side effects. These results indicate that the C-PEG-SLN is a promising platform for the delivery of therapeutic agents for MDR cancer chemotherapy.