Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Apoptosis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558206

RESUMO

Diabetic nephropathy (DN) is a serious public health problem worldwide, and ferroptosis is deeply involved in the pathogenesis of DN. Prediabetes is a critical period in the prevention and control of diabetes and its complications, in which kidney injury occurs. This study aimed to explore whether ferroptosis would induce kidney injury in prediabetic mice, and whether vitamin D (VD) supplementation is capable of preventing kidney injury by inhibiting ferroptosis, while discussing the potential mechanisms. High-fat diet (HFD) fed KKAy mice and high glucose (HG) treated HK-2 cells were used as experimental subjects in the current study. Our results revealed that serious injury and ferroptosis take place in the kidney tissue of prediabetic mice; furthermore, VD intervention significantly improved the kidney structure and function in prediabetic mice and inhibited ferroptosis, showing ameliorated iron deposition, enhanced antioxidant capability, reduced reactive oxygen species (ROS) and lipid peroxidation accumulation. Meanwhile, VD up-regulated Klotho, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, and down-regulated p53, transferrin receptor 1 (TFR1) and Acyl-Coenzyme A synthetase long-chain family member 4 (ACSL4) expression. Moreover, we demonstrated that HG-induced ferroptosis is antagonized by treatment of VD and knockdown of Klotho attenuates the protective effect of VD on ferroptosis in vitro. In conclusion, ferroptosis occurs in the kidney of prediabetic mice and VD owns a protective effect on prediabetic kidney injury, possibly by via the Klotho/p53 pathway, thus inhibiting hyperglycemia-induced ferroptosis.

2.
Mitochondrial DNA B Resour ; 9(3): 371-375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529111

RESUMO

Curcuma viridiflora Roxb., a plant species of significant pharmaceutical interest, has been the subject of limited chloroplast genomic research. In this study, we present the sequencing and assembly of the C. viridiflora chloroplast genome, which is characterized by a circular chromosome spanning 162,212 base pairs and a GC content of 36.20%. The genome encodes 87 protein-coding genes (PCGs), 38 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. A phylogenetic analysis was conducted, incorporating eight related species, and based on the complete chloroplast genome and protein-coding DNA sequences of six related taxa within the genus. Outgroup species Zingiber zerumbet and Zingiber officinale were also included in the analysis. The results indicate a close relationship between C. viridiflora and Curcuma phaeocaulis, Curcuma sichuanensis, and Curcuma yunnanensis. This study provides the first chloroplast genome of C. viridiflora, thereby contributing a valuable genomic resource for future research on medicinal plants within the Curcuma genus.

3.
Chemosphere ; 346: 140559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898465

RESUMO

The solubility of cadmium (Cd) in soil and its transfer to plants are influenced by soil pH. While increasing soil pH reduces Cd solubility and accumulation in rice plants grown in acidic soils, its effect on Cd accumulation in vegetables remains inconclusive. Here, we investigated the impact of soil pH on Cd accumulation in dicotyledonous vegetables and elucidated the underlying molecular mechanisms. Soils collected from various locations were supplemented with varying quantities of lime to achieve soil pH values of around 5.0, 6.0, 7.0, and 8.0. Raising soil pH from around 5.0 to 8.0 markedly decreased extractable Cd. However, increasing soil pH tended to promote shoot Cd accumulation in dicotyledonous vegetable species including lettuce, pakchoi, and Chinese cabbage, and the model dicotyledonous plant Arabidopsis thaliana. Conversely, soil pH increase resulted in a monotonic decrease in rice Cd accumulation. In our hydroponic experiments, we discovered that iron (Fe) deficiency substantially increased Cd uptake and accumulation in dicotyledonous plants but not in rice. Increasing soil pH reduced soil Fe availability and induced the Fe transporter gene IRT1 expression in dicotyledonous vegetables roots, which led to an increase in IRT1-mediated Cd uptake and subsequently increased Cd accumulation as soil pH increases. A comprehensive model incorporating extractable Cd and root IRT1 expression better explained Cd accumulation in vegetable shoots. The application of 50 mg/kg of Fe fertilizer in neutral or alkaline soils resulted in a significant reduction in Cd accumulation by 34-58% in dicotyledonous vegetables. These findings reveal that increasing soil pH has two opposite effects, decreasing soil Cd availability while promoting Cd uptake through IRT1 upregulation, reconciling the inconsistency in its effect on Cd accumulation in dicotyledonous plants. Our findings provide important insights for understanding the factors affecting Cd uptake in plants and offer a practical solution to mitigate Cd contamination in vegetables.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Oryza , Poluentes do Solo , Ferro/química , Verduras/metabolismo , Cádmio/análise , Fertilizantes , Proteínas de Membrana Transportadoras/metabolismo , Solo/química , Arabidopsis/genética , Arabidopsis/metabolismo , Poluentes do Solo/análise , Oryza/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 36(4): 450-4, 2011 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-21598539

RESUMO

OBJECTIVE: To develop HCPT liposome with small diameter and to study the tissue distribution of the HCPT liposome in rats. METHOD: Modified solvent-injection method was used to prepare HCPT liposome. The entrapment efficiency, morphology, size and zeta potential were also investigated. The transformation temperature and the ratio of cholesterol to phospholipids were determined by fluorescence spectrophotometry. HCPT liposome and HCPT injection (5 mg x kg(-1)) were injected by tail vein in mice, respectively. The tissue concentrations of HCPT were determined by LC-MS/MS. RESULT: Under selected process conditions, the HCPT liposomes were spherical and integrated with the mean entrapment efficiency of (96.83 +/- 2.32)%, the size of (180.5 +/- 4.5) nm and the zeta potential of--(32.1 +/- 1.3) mV. It showed that the optimum proportion of cholesterol to phospholipids was 1.5: 10, the optimum transformation temperature was 32.5 degrees C; HCPT liposome at a dose of 5 mg x kg(-1) led to higher concentration and longer duration of action compared with HCPT injection on market. CONCLUSION: HCPT liposome prepared by solvent-injection method was characteristic of small mean diameter, high encapsulation efficiency and long circulation in vivo.


Assuntos
Camptotecina/análogos & derivados , Animais , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Feminino , Lipossomos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA