Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 112(5): 689-691, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452736

RESUMO

Failure in behavioral suppression is a key feature in substance use disorders, potentially leading to compulsive drug seeking and relapse. In this issue of Neuron, Paniccia et al.1 elucidated a heroin-damaged paraventricular nucleus of the thalamus (PVT)-accumbal circuit and how recovery of PVT function could prevent heroin relapse.


Assuntos
Analgésicos Opioides , Heroína , Tálamo/fisiologia , Neurônios/fisiologia , Comportamento de Procura de Droga
2.
J Ethnopharmacol ; 323: 117699, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38185262

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal, known as Ashwagandha, has long been used in traditional medicine in Ayurveda, India, a representative adaptogen. The main active constituents of W. somnifera are withanolides, and the root is often used as a medicine with a wide range of pharmacological activities, which can be used to treat insomnia, neurasthenia, diabetes mellitus and skin cancer. AIM OF THE STUDY: Whole-component qualitative and quantitative analyses were performed on W. somnifera. We explored the ameliorative effect of the adaptogen representative plant W. somnifera on the senescence events of MGO-injured fibroblasts and its action mechanism and verified the hypotheses that WS can inhibit the accumulation of AGEs and regulate the dynamic balance among the components of the ECM by modulating the expression of integrin ß1 receptor; as a result, WS maintains cellular behavioural and biological functions in a normal range and retards the aging of skin from the cellular level. MATERIALS AND METHODS: In this study, the components of WS were first qualitatively and quantitatively analysed by HPLC fingerprinting and LC-MS detection. Second, a model of MGO-induced injury of CML-overexpressing fibroblasts was established. ELISA was used to detect CML expression and the synthesis of key extracellular matrix ECM protein components COL1, FN1, LM5 and TNC synthesis; CCK-8 was used to detect cell viability; EDU was used to detect cell proliferation capacity; fluorescence was used to detect cell adhesion capacity; and migration assay were used to detect cell migration capacity; qRT-PCR was used to detect the regulatory pathway TGF-ß1 and MMP-2, MMP-9 in ECMs; immunofluorescence was used to detect the expression of ITGB1; and WB was used to detect the expression of COL1, FN1, LM5, Tnc, TGF-ß1, MMP-2, MMP-9 and ITGB1. RESULTS: In total, 27 active ingredients were analysed from WS, which mainly consisted of withanolide components, such as withaferin A and withanolide A. Based on the model of MGO-induced fibroblast senescence injury, WS significantly inhibited CML synthesis. By up-regulating the expression of integrin ß1, it upregulated the expression of the TGF-ß1 gene, which is closely related to the generation of ECMs, downregulated the expression of the MMP-2 and MMP-9 genes, which are closely related to the degradation of ECMs, maintained the dynamic balance of the four types of ECMs, and improved cell viability as well as proliferation, migration and adhesion abilities. CONCLUSIONS: WS can prevent cellular behavioural dysfunction and delay skin ageing by reducing the accumulation of CML, upregulating the expression of the ITGB1 receptor, maintaining the normal function of ECM-integrin receptor interaction and preventing an imbalance between the production and degradation of protein components of ECMs. The findings reported in this study suggest that WS as a CML inhibitor can modulate ECM-integrin homeostasis and has great potential in the field of aging retardation.


Assuntos
Withania , Vitanolídeos , Fator de Crescimento Transformador beta1/metabolismo , Withania/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Óxido de Magnésio/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Integrinas/metabolismo , Vitanolídeos/farmacologia , Vitanolídeos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Raízes de Plantas/química
3.
Drug Des Devel Ther ; 17: 341-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776447

RESUMO

Background: Adaptogens are a class of medicinal plants that can nonspecifically enhance human resistance. Most of the plant adaptogens have relevant applications in dermatology, but there are still few studies related to their particular action and co-operative mechanisms in topical skin application. Methods: Plant adaptogens related articles and reviews that published between 1999 and 2022 were obtained from the Web of Science Core Collection database. Various bibliographic elements were collected, including the annual number of publications, countries/regions, and keywords. CiteSpace, a scientometric software, was used to conduct bibliometric analyses. Also, the patsnap global patent database was used to analyze the patent situation of plant adaptogens in the field of cosmetics up to 2021. Results: We found that the effects of plant adaptogens on skin diseases mainly involve atopic dermatitis, acne, allergic contact dermatitis, psoriasis, eczema, and androgenetic alopecia, etc. And the effects on skin health mainly involve anti-aging and anti-photoaging, anti-bacterial and anti-fungal, anti-inflammatory, whitening, and anti-hair loss, etc. Also, based on the results of patent analysis, it is found that the effects of plant adaptogens on skin mainly focus on aging retardation. The dermatological effects of plant adaptogens are mainly from Fabaceae Lindl., Araliaceae Juss. and Lamiaceae Martinov., and their mainly efficacy phytochemical components are terpenoids, phenolic compounds and flavonoids. Conclusion: The plant adaptogens can repair the skin barrier and maintain skin homeostasis by regulating the skin HPA-like axis, influencing the oxidative stress pathway to inhibit inflammation, and regulating the extracellular matrix (ECM) components to maintain a dynamic equilibrium, ultimately achieving the treatment of skin diseases and the maintenance of a healthy state.


Assuntos
Dermatologia , Plantas Medicinais , Dermatopatias , Humanos , Extratos Vegetais/farmacologia , Envelhecimento , Dermatopatias/tratamento farmacológico
4.
Artigo em Inglês | MEDLINE | ID: mdl-26539228

RESUMO

Tang-tong-fang (TTF) is a Chinese herbal formula that has been shown to be beneficial in diabetic peripheral neuropathy (DPN), a common complication secondary to diabetic microvascular injury. However, the underlying mechanism of protection in nerve ischemia provided by TTF is still unclear. We hypothesized that TTF alleviates DPN via inhibition of ICAM-1 expression. Therefore, we tested the effect of TTF in a previously established DPN model, in which nerve injury was induced by ischemia/reperfusion in streptozotocin-induced diabetic rats. We found that the conduction velocity and amplitude of action potentials of sciatic nerve conduction were reduced in the DPN model group but were rescued by TTF treatment. In addition, TTF treatment also attenuated the effect of DPN on other parameters including histology and ultrastructural changes, expression of ICAM-1, MPO, and TNF-α in rat sciatic nerves, and plasma sICAM-1 and MPO levels. Together, our data suggest that TTF treatment may alleviate DPN via ICAM-1 inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA