Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714185

RESUMO

Immune memory has a protective effect on the human body, but abnormal immune memory is closely related to the occurrence and development of autoimmune diseases including inflammatory bowel disease (IBD). Sishen Pill (SSP) is a classic prescription of traditional Chinese medicine, which is often used to treat chronic colitis, but it is not clear whether SSP can alleviate experimental colitis by remodeling immune memory. In the present study, the therapeutic effect of SSP on chronic colitis induced by dextran sulfate sodium (DSS) was evaluated by colonic length, colonic weight index, macroscopic and microscopic scores, and pathological observation. The cytokine levels were tested by enzyme-linked immunosorbent assay (ELISA); the percentages of central memory T (Tcm) and effector memory T (Tem) cells were analyze\d by flow cytometry; and activation of phosphoinositide 3-kinase (PI3K)/Akt signaling proteins was measured by western blotting. After 7-days' treatment, SSP alleviated DSS-induced colitis, which was demonstrated by decreased colonic weight index, colonic weight, histopathological injury scores, restored colonic length, gradual recovery of colonic mucosa, and lower levels of interleukin (IL)-2, IL-7, IL-12, and IL-15, while SSP increased IL-10 expression. SSP obviously regulated the quantity and subpopulation of Tcm and Tem cells. Furthermore, SSP markedly inhibited activation of PI3K, Akt, phospho-Akt, Id2, T-bet, forkhead box O3a, Noxa, and C-myc proteins in the PI3K/Akt signaling pathway and activated Rictor, Raptor, tuberous sclerosis complex (TSC)1, TSC2, phospho-AMP-activated kinase (AMPK)-α, AMPK-α, eukaryotic translation initiation factor 4E-binding protein 2, kinesin family member 2a, and 70-kDa ribosomal protein S6 kinase. These results indicate that SSP effectively controls Tem cells in the peripheral blood to relieve experimental colitis induced by DSS, which were potentially related with inhibiting the PI3K/Akt signaling pathway.

2.
J Ethnopharmacol ; 240: 111936, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31078692

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sishen Wan (SSW) is a commercial and frequently used Chinese patent medicine listed in the Chinese Pharmacopeia, which is usually used to treat chronic colitis. AIM OF THE STUDY: We explored the pharmacological mechanism of Sishen Wan attenuated experimental chronic colitis by inhibiting Wnt/ß-catenin pathway. MATERIALS AND METHODS: Experimental chronic colitis was induced by trinitrobenzene sulfonic acid (TNBS). The therapeutic effect of SSW were analyzed by index of colonic weight, colonic length, pathological score. Cytokines expression were analyzed by ELISA, while the apoptosis level was checked by TUNEL staining. These proteins of Wnt/ß-catenin signaling pathway was analyzed by Western blot assay. RESULTS: Rats with TNBS-induced chronic colitis were treated by SSW for 10 days. The efficacy of SSW was demonstrated by improved macroscopic and microscopic colonic damage. SSW increased the level of ATP in colonic mucosa, while SSW inhibited ß-catenin, ubiquitination of Nemo-like-kinase-associated ring finger protein and T-cell factor, and expression of Wnt/ß-catenin downstream proteins (including c-Myc, cyclo-oxygenase-2, cyclin D1, survivin, signal transducer and activator of transcription 3 and zipper-interacting protein kinase), and improved lymphoid enhancer factor ubiquitination and ß-TrCP activity, followed by excessive apoptosis of colonic epithelial cells. CONCLUSIONS: SSW effectively attenuated experimental chronic colitis induced by TNBS, which was realized by inhibition of the Wnt/ß-catenin signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/imunologia , Medicamentos de Ervas Chinesas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Doença Crônica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Citocinas/imunologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico , Proteína Wnt3A/imunologia , beta Catenina/imunologia
3.
Mater Sci Eng C Mater Biol Appl ; 91: 395-403, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033270

RESUMO

Although sorafenib (SFB) showed improved efficacy and much reduced the side effects in clinical liver cancer therapy, its therapeutic efficacy was still greatly limited due to short half-life in vivo as well as drug resistance. To solve these problems, we developed a novel SFB-loaded polymeric nanoparticle for targeted therapy of liver cancer. This polymeric nanoparticle, referred to NP-SFB-Ab, was fabricated from self-assembly of biodegradable block copolymers TPGS-b-poly(caprolactone) (TPGS-b-PCL) and Pluronic P123 and drug SFB, followed by conjugating the anti-GPC3 antibody. NP-SFB-Ab showed robust stability and achieve excellent SFB release in cell medium. The CLSM demonstrated that the Ab-conjugated NP exhibited much higher cellular uptake in HepG2 human liver cells than non-targeted NP. The MTT assay also confirmed that NP-SFB-Ab caused much greater cytotoxicity than non-targeted NP-SFB and free SFB. Finally, NP-SFB-Ab was proved to greatly inhibit the tumor growth of HepG2 xenograft-bearing nude mice without obvious side effects. Therefore, this NP-SFB-Ab provides a promising new approach for targeted therapy of hepatocellular carcinoma.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas , Poloxaleno , Poliésteres , Sorafenibe , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células HeLa , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Poloxaleno/química , Poloxaleno/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Sorafenibe/química , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA