Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Nanomedicine ; 18: 7237-7255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076731

RESUMO

Background: Radiotherapy is one of the main clinical methods for the treatment of malignant tumors at present. However, its application is limited by the radiation resistance of some tumor cells and the irradiation damage to the surrounding normal tissues, and the limitation of radiotherapy dose also affects the therapeutic effect. Therefore, developing diagnostic and therapeutic agents with imaging and radiosensitizing functions is urgently needed to improve the accuracy and efficacy of radiotherapy. Materials and Strategy: Herein, we synthesized multifunctional nanotheranostic FRNPs nanoparticles based on gold nanocages (GNCs) and MnO2 for magnetic resonance (MR)/photoacoustic (PA) imaging and combined photothermal, radiosensitive and chemical therapy. A programmed therapy strategy based on FRNPs is proposed. First, photothermal therapy is applied to ablate large tumors and increase the sensitivity of the tumor tissue to radiotherapy, then X-ray radiation is performed to further reduce the tumor size, and finally chemotherapeutic agents are used to eliminate smaller residual tumors and distant metastases. Results: As revealed by fluorescence, MR and PA imaging, FRNPs achieved efficient aggregation and retention at tumor sites of mice after intravenous injection. In vivo studies have shown that the programmed treatment of FRNPs-injected nude mice which were exposed to X-ray after 808 laser irradiation achieved the greatest inhibition of tumor growth compared with other treatment groups. Moreover, no obvious systemic toxicity was observed in all groups of mice, indicating the good biocompatibility of FRNPs and the safety of the treatment scheme. Conclusion: To sum up, our work not only showed a new radiosensitizer, but also provided a promising theranostic strategy for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Terapia Fototérmica , Ouro , Camundongos Nus , Compostos de Manganês , Linhagem Celular Tumoral , Óxidos , Fototerapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagem Multimodal , Nanomedicina Teranóstica/métodos
2.
J Pineal Res ; 75(4): e12913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746893

RESUMO

Maintaining placental endocrine homeostasis is crucial for a successful pregnancy. Pre-eclampsia (PE), a gestational complication, is a leading cause of maternal and perinatal morbidity and mortality. Aberrant elevation of testosterone (T0 ) synthesis, reduced estradiol (E2 ), and melatonin productions have been identified in preeclamptic placentas. However, the precise contribution of disrupted homeostasis among these hormones to the occurrence of PE remains unknown. In this study, we established a strong correlation between suppressed melatonin production and decreased E2 as well as elevated T0 synthesis in PE placentas. Administration of the T0 analog testosterone propionate (TP; 2 mg/kg/day) to pregnant mice from E7.5 onwards resulted in PE-like symptoms, along with elevated T0 production and reduced E2 and melatonin production. Notably, supplementation with melatonin (10 mg/kg/day) in TP-treated mice had detrimental effects on fetal and placental development and compromised hormone synthesis. Importantly, E2 , but not T0 , actively enhanced melatonin synthetase AANAT expression and melatonin production in primary human trophoblast (PHT) cells through GPER1-PKA-CREB signaling pathway. On the other hand, melatonin suppressed the level of estrogen synthetase aromatase while promoting the expressions of androgen synthetic enzymes including 17ß-HSD3 and 3ß-HSD1 in PHT cells. These findings reveal an orchestrated feedback mechanism that maintains homeostasis of placental sex hormones and melatonin. It is implied that abnormal elevation of T0 synthesis likely serves as the primary cause of placental endocrine disturbances associated with PE. The suppression of melatonin may represent an adaptive strategy to correct the imbalance in sex hormone levels within preeclamptic placentas. The findings of this study offer novel evidence that identifies potential targets for the development of innovative therapeutic strategies for PE.

3.
Cells ; 12(6)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980165

RESUMO

Due to their low immunogenicity, high biocompatibility and ready availability in large quantities, plant-derived vesicles extracts have attracted considerable interest as a novel nanomaterial in tumor therapy. Bitter melon, a medicinal and edible plant, has been reported to exhibit excellent antitumor effects. It is well-documented that breast cancer gravely endangers women's health, and more effective therapeutic agents must be urgently explored. Therefore, we investigated whether bitter melon-derived vesicles extract (BMVE) has antitumor activity against breast cancer. Ultracentrifugation was used to isolate BMVE with a typical "cup-shaped" structure and an average size of approximately 147 nm from bitter melon juice. The experimental outcomes indicate that 4T1 breast cancer cells could efficiently internalize BMVE, which shows apparent anti-proliferative and migration-inhibiting effects. In addition, BMVE also possesses apoptosis-inducing effects on breast cancer cells, which were achieved by stimulating the production of reactive oxygen species (ROS) and disrupting mitochondrial function. Furthermore, BMVE could dramatically inhibit tumor growth in vivo with negligible adverse effects. In conclusion, BMVE exhibits a pronounced antitumor effect on 4T1 breast cancer cells, which has great potential for use in tumor therapy.


Assuntos
Neoplasias da Mama , Momordica charantia , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Momordica charantia/química
4.
Adv Healthc Mater ; 11(8): e2102439, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859964

RESUMO

The boosting exploitation of graphene oxide (GO) increases exposure risk to human beings. However, as primary defender in the first immune line, neutrophils' mechanism of defensive behavior toward GO remains unclear. Herein, we discovered that neutrophils recognize and defensively degrade GO in a lateral dimension dependent manner. The micrometer-sized GO (mGO) induces NETosis by releasing neutrophil extracellular traps (NETs), while nanometer-sized GO (nGO) elicits neutrophil degranulation. The two neutrophils' defensive behaviors are accompanied with generation of reactive oxygen species and activation of p-ERK and p-Akt kinases. However, mGO-induced NETosis is NADPH oxidase (NOX)-independent while nGO-triggered degranulation is NOX-dependent. Furthermore, myeloperoxidase (MPO) is determinant mediator despite distinct neutrophil phenotypes. Neutrophils release NETs comprising of MPO upon activated with mGO, while MPO is secreted via nGO-induced degranulation. Moreover, the binding energy between MPO and GO is calculated to be 69.8728 kJ mol-1 , indicating that electrostatic interactions mainly cause the spontaneous binding process. Meanwhile, the central enzymatic biodegradation occurs at oxygenic active sites and defects on GO. Mass spectrometry analysis deciphers the degradation products are biocompatible molecules like flavonoids and polyphenols. This study provides fundamental evidence and practical guidance for nanotechnology based on GO, including vaccine adjuvant, implantable devices, and energy storage.


Assuntos
Armadilhas Extracelulares , Luta Romana , Grafite , Óxido de Magnésio/metabolismo , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo
5.
Nanoscale ; 13(10): 5383-5399, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666213

RESUMO

Early diagnosis of tumors is crucial in selecting appropriate treatment options to achieve the desired therapeutic effect, but it is difficult to accurately diagnose cancer by a single imaging modality due to technical constraints. Therefore, we synthesized a type of Fe3O4 nanoparticle with manganese dioxide grown on the surface and then prepared it by loading photosensitive drugs and traditional Chinese medicine monomers to create an integrated diagnosis/treatment multifunctional nanoplatform: Fe3O4@MnO2-celastrol (CSL)/Ce6. This nanoplatform can have full advantage of the tumor microenvironment (TME) characteristics of hypoxia (hypoxia), acidic pH (acidosis), and increased levels of reactive oxygen species (e.g., H2O2), even outside the TME. Specific imaging and drug release can also enhance tumor therapy by adjusting the hypoxic state of the TME to achieve the combined effect of chemotherapy (CT) and photodynamic therapy (PDT). Moreover, the obtained Fe3O4@MnO2-CSL/Ce6 has H2O2- and pH-sensitive biodegradation and can release the anticancer drug celastrol (CSL) and photosensitizer Ce6 in TME and simultaneously generate O2 and Mn2+. Therefore, the "dual response" synergistic strategy also confers specific drug release on nanomaterials, relieves tumor hypoxia and antioxidant capacity, and achieves significant optimization of CT and PDT. Furthermore, the resulting Mn2+ ions and Fe3O4 nanoparticles can be used for T1/T2 magnetic resonance imaging on tumor-bearing mice, and the released Ce6 can simultaneously provide fluorescence imaging functions. Therefore, Fe3O4@MnO2-CSL/Ce6 realized the synergistic treatment of PDT and CT under multimodal near-infrared fluorescence/photoacoustic (photoacoustic) imaging monitoring, showing its great potential in the accurate medical treatment of tumors.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Peróxido de Hidrogênio/uso terapêutico , Ferro/uso terapêutico , Manganês , Compostos de Manganês , Camundongos , Imagem Multimodal , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Óxidos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Microambiente Tumoral
6.
BMC Genomics ; 22(1): 103, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541261

RESUMO

BACKGROUND: Atractylodes DC is the basic original plant of the widely used herbal medicines "Baizhu" and "Cangzhu" and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. RESULTS: The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42-47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. CONCLUSIONS: Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


Assuntos
Atractylodes , Genoma de Cloroplastos , Atractylodes/genética , Cloroplastos , Repetições de Microssatélites , Filogenia
7.
Acta Biomater ; 117: 361-373, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33007481

RESUMO

Peptide modified nanoparticles have emerged as powerful tools for enhanced cancer diagnosis and novel treatment strategies. Here, human programmed death-ligand 1 (PD-L1) peptides were used for the first time for the modification of gold nanoprisms (GNPs) to enhance targeting efficiency. A multifunctional nanoprobe was developed that the GNPs@PEG/Ce6-PD-L1 peptide (GNPs@PEG/Ce6-P) was used for imaging-guided photothermal/photodynamic therapy by using the targeting effect of PD-L1. Both confocal imaging and flow cytometry experiments demonstrated a remarkable affinity of the as-prepared nanoprobes GNPs@PEG/Ce6-P to lung cancer cells (HCC827), which have a high PD-L1 expression. Subsequent in vitro and in vivo experiments further demonstrated that the nanoprobes GNPs@PEG/Ce6-P not only allowed for real-time visualization via fluorescence (FL) imaging and photoacoustic (PA) imaging, but also served as phototherapy agents for synergistic photothermal therapy (PTT) and photodynamic therapy (PDT). Furthermore, treatments on human lung cancer cells-derived tumors demonstrated that the nanoprobes GNPs@PEG/Ce6-P could significantly suppress tumor growth through PTT and PDT from GNPs and Ce6, respectively. In conclusion, the as-prepared new nanoprobes show promising potential for nanomedicine with remarkable targeting ability for dual-mode imaging and enhanced PDT and PTT effects on lung cancer.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Porfirinas , Antígeno B7-H1 , Linhagem Celular Tumoral , Clorofilídeos , Ouro , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Medicina de Precisão
8.
Acta Biomater ; 99: 307-319, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513911

RESUMO

Gold nanoprisms (GNPs) have been broadly studied for the potential applications in both imaging and treatment on tumors due to their special characteristics. Herein we reported that a new nanoplatform GNPs@PSS/PDADMAC-siRNA (GNPs-siRNA) was designed and fabricated by sequentially coating the GNPs with poly (sodium 4-styrenesulfonate) (PSS) and poly (-diallyldimethylammonium chloride) (PDADMAC) to carry small interfering RNA (siRNA). Human program death-ligand 1 (PD-L1) was recently known to be crucial for cancer cell survival through the intrinsic signaling activities, besides serving as an important checkpoint gene in immune system. We successfully attached the human PD-L1 siRNA to the surface of GNPs@PSS/PDADMAC to obtain the GNPs-hPD-L1 siRNA nanoplatform. Real Time Cellular Analysis (RTCA) assay demonstrated that GNPs-hPD-L1 siRNA exhibited remarkable capacity to inhibit the proliferation of human lung cancer cells. Subsequent in vitro and in vivo experiments verified that the GNPs-hPD-L1 siRNA not only functioned as a carrier for siRNA delivery to down-regulate the hPD-L1 expression, but also served for photoacoustic (PA) imaging and photothermal agents for photothermal therapy (PTT) in both human lung cancer cells and human lung cancer cells-derived tumors. Our findings could be expected to provide an innovative direction for future clinical transformation application. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first paper related to the hPD-L1 siRNA delivery combined with the gold nanoparticles, especially the gold nanoprisms. The as-prepared GNPs-hPD-L1 siRNA nanoplatform not only functioned as a carrier for siRNA delivery to down-regulate the PD-L1 expression, but also acted as photothermal agents for theranostic effects in both human lung cancer cells and human lung cancer cells-derived tumors. The as-prepared GNPs-hPD-L1 siRNA nanoplatform could knock down human PD-L1 gene expression, which caused the inhibition on proliferation of human lung cancer cell in vitro or in vivo. The as-prepared GNPs-hPD-L1 siRNA nanoplatform possessed excellent photoacoustic imaging ability and photothermal therapy effects.


Assuntos
Antígeno B7-H1/genética , Regulação para Baixo , Ouro/química , Neoplasias Pulmonares/terapia , Nanopartículas Metálicas/química , Fototerapia/métodos , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Sistema Imunitário , Camundongos , Camundongos Nus , Técnicas Fotoacústicas
9.
Nanomedicine ; 20: 102019, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125676

RESUMO

How to eradicate Helicobacter pylori (H. pylori) in vivo with antibiotic resistance owns tremendous clinical requirement. Herein, gold nanostars were conjugated with acid-sensitive cis-aconitic anhydride modified anti-H. pylori polyclonal antibodies, resultant pH sensitive gold nanostars@H. pylori-antibodies nanoprobes (GNS@Ab) were employed for the theranostics of H. pylori in vivo. Photoacoustic imaging confirmed that prepared GNS@Ab could target actively H. pylori in the stomach. GNS@Ab nanoprobes could kill H. pylori in vivo in model animals under NIR laser irradiation, all GNS@Ab nanoprobes could be excreted out of gut within 7 days after oral administration. Gastric local lesion caused by H. pylori restored to normal status within one month. GNS@Ab nanoprobes within therapeutic doses did not damage intestinal bacteria imbalance. Forty clinical specimens of H. pylori with antibiotic resistance were verified validity of GNS@Ab nanoprobes. Prepared oral pH-sensitive GNS@Ab nanoprobes own clinical translational potential in the theranostics of H. pylori in near future.


Assuntos
Anticorpos/farmacologia , Microbioma Gastrointestinal , Ouro/química , Helicobacter pylori/fisiologia , Nanopartículas Metálicas/química , Administração Oral , Animais , Morte Celular/efeitos dos fármacos , Módulo de Elasticidade , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas , Fototerapia , Filogenia , Polietilenoglicóis/química , Estômago/microbiologia , Distribuição Tecidual/efeitos dos fármacos
10.
Nanoscale Res Lett ; 14(1): 79, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30838476

RESUMO

Up to date, the way in which metal nanoparticles are cleared in vivo has yet to be elucidated well. Herein, we report a novel intestinal goblet cell-mediated in vivo clearance pathway to remove metal nanoparticles. Typical metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters were selected as representative examples. These metal nanoparticles were prepared, characterized, and injected via tail vein into a mice model with common bile duct (CBD) ligation. The feces and urines were collected for 7 days to be followed by the sacrifice of the mice and collection of the intestinal and gastric tissues for further analysis. The results showed that all four selected metal nanoparticles were located inside the goblet cells (GCs) of the whole intestinal tissue and were excreted into the gut lumen through the secretion of intestinal GC. Moreover, triangular silver nanoplates and gold nanorods were located inside the gastric parietal cells (PCs). Importantly, nanoparticles did not cause obvious pathological changes in intestinal tissues. In this study, we confirmed that the blood corpuscles are involved in the GCs secretion pathway. Furthermore, we found that the secretion of nanoparticles from intestinal GCs and PCs is accelerated by diarrhea induced via Chinese herbs. In conclusion, metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters can be cleaned away by intestinal GCs and PCs. This novel pathway of in vivo clearance of metal nanoparticles has a great potential for future applications such as new drug design and development, nanoparticle-based labeling and in vivo tracking, and biosafety evaluation of in vivo nanoparticles.

11.
Acta Biomater ; 89: 289-299, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851455

RESUMO

Nanotheranostics has gained increasing interest, as it offers a great potential to realize personalized diagnostics and therapy. In this work, we report a facile approach of the fabrication of gold nanostars (GNS) attached with matrix metalloproteinases (MMP2) polypeptides (Ac-GPLGIAGQ) and IR-780 iodide through bovine serum albumin (BSA) for targeted dual-modal photoacoustic (PA)/near-infrared (NIR) fluorescence imaging and enhanced photothermal therapy (PTT)/photodynamic therapy (PDT) for lung cancer. MMP2 polypeptides served as the targeting ligand, IR-780 iodide functioned as the NIR fluorescence imaging agent as well as PTT/PDT agent, and GNS acted as the carrier of IR-780 molecules and performed PA imaging and PTT. DLS and CCK-8 assay demonstrated that the nanoprobes (GNS@BSA/I-MMP2) exhibited excellent stability and biocompatibility under physiological conditions. Subsequent in vitro studies verified that GNS@BSA/I-MMP2 nanoparticles (NPs) were effectively internalized by A549 cancer cells and exhibited remarkable antitumor efficacy. Furthermore, GNS@BSA/I-MMP2 NPs could specifically target the tumor and significantly suppress the tumor growth, and their antitumor effects were mainly through the synergistic effects of PDT and PTT based on IR-780 and GNS. These findings imply the potential of GNS@BSA/I-MMP2 NPs as a targeting PA/NIR probe in tumor diagnosis and combined therapy with a single light source. STATEMENT OF SIGNIFICANCE: We reported a convenient and facile approach to load IR-780 iodides in gold nanostars (GNS). This material could simultaneously perform near-infrared imaging/photoacoustic imaging and thermotherapy/photodynamic therapy. MMP2 coating on the surface of GNS@BSA/IR-780 promoted the prepared nanoparticles (GNS@BSA/I-MMP2) to target the tumor region. The heat generated by the synergistic effect of the GNS and IR-780 molecules resulted in the high temperature of the GNS@BSA/I-MMP2 NPs, which efficiently suppressed the growth of tumor, and the tumor volume decreased by 93% compared with that in the PBS groups with laser irradiation.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos , Ouro , Hipertermia Induzida , Indóis , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas Metálicas , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Imagem Óptica , Fototerapia , Células A549 , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Desenvolvimento de Medicamentos , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Theranostics ; 7(6): 1650-1662, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529642

RESUMO

Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO3/ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO3/ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO3/ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO3/ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO3/ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO3/ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.


Assuntos
Portadores de Fármacos/administração & dosagem , Hipertermia Induzida/métodos , Verde de Indocianina/administração & dosagem , Nanopartículas/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Animais , Carbonato de Cálcio/administração & dosagem , Carbonato de Cálcio/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Ouro/administração & dosagem , Ouro/metabolismo , Xenoenxertos , Humanos , Verde de Indocianina/metabolismo , Verde de Indocianina/farmacocinética , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacocinética , Resultado do Tratamento
13.
Nanoscale ; 9(1): 334-340, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27922138

RESUMO

Human-induced pluripotent stem cells (iPS) possess an intrinsic tumor tropism ability. However, iPS cells are impeded in clinical applications of tumor therapy due to the formation of teratomas and their survival in normal organs such as the liver, lungs, spleen and kidneys. Mitomycin C (MMC) can overcome this limitation by suppressing iPS proliferation. Herein, we fabricated a safe delivery system of iPS cells treated with MMC loading with gold nanorods (AuNRs) for the targeted photothermal treatment of gastric cancer. Our results showed that the tumor cells were efficiently killed by the heat generated from the gold nanorods, and the iPS cells ultimately died due to the action of MMC seven days after the photothermal treatment. This suggested that pre-treated iPS cells with MMC can be used as a novel and safe approach for targeted tumor therapy. This paves the road for clinical translation in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Células-Tronco Pluripotentes Induzidas/citologia , Mitomicina/farmacologia , Nanotubos , Fototerapia , Neoplasias Gástricas/terapia , Animais , Feminino , Ouro , Temperatura Alta , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA