Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Med Food ; 27(4): 287-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442325

RESUMO

Secondary osteoporosis is frequently due to the use of high-dose glucocorticoids (GCs). The existing strategy for managing glucocorticoid-induced osteoporosis (GIOP) is considered insufficient and remains in a state of ongoing evolution. Therefore, it is crucial to develop more precise and effective agents for the treatment of GIOP. The constituents of Reynoutria multiflora (Thunb.) Moldenke, specifically Polygonum multiflorum (PM) Thunb, have previously shown promise in mitigating osteopenia. This study aimed to investigate the therapeutic effects of an ethanolic PM extract (PMR30) against GIOP in male rats. Prednisone (6 mg/kg/day, GC) was continuously administered to rats to induce GIOP, and they were subjected to treatment with or without ethanolic PMR30 for a duration of 120 days. Serum was collected for biochemical marker analysis. Bone histomorphometric, histological, and TUNEL analyses were performed on tibia samples. The protein expressions of LC3, Agt5, and Beclin 1 in the femur underwent examination through western blotting. Prolonged and excessive GC treatment significantly impeded bone formation, concomitant with reduced bone mass and body weight. It also suppressed OCN and OPG/RANKL in serum, and decreased Beclin 1 and LC3 in bone. Simultaneously, there was an elevation in bone resorption markers and apoptosis. Treatments with both high dose and low dose of PMR30 alleviated GIOP, stimulated bone formation, and upregulated OCN and OPG/RANKL, while suppressing TRACP-5b, CTX-I, and apoptosis. The impact of PMR30 possibly involves the enhancement of autophagy proteins (LC3, Agt5, and Beclin 1) and the inhibition of apoptosis within the bone. PMR30 holds promise as a prospective therapeutic agent for preventing and treating GIOP.


Assuntos
Fallopia multiflora , Osteoporose , Ratos , Masculino , Animais , Glucocorticoides/efeitos adversos , Reynoutria , Proteína Beclina-1 , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
2.
Front Pharmacol ; 14: 1276038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116081

RESUMO

Salvia miltiorrhiz, commonly known as "Danshen" in Chinese medicine, has longstanding history of application in cardiovascular and cerebrovascular diseases. Renowned for its diverse therapeutic properties, including promoting blood circulation, removing blood stasis, calming the mind, tonifying the blood, and benefiting the "Qi", recent studies have revealed its significant positive effects on bone metabolism. This potential has garnered attention for its promising role in treating musculoskeletal disorders. Consequently, there is a high anticipation for a comprehensive review of the potential of Salvia miltiorrhiza in the treatment of various musculoskeletal diseases, effectively introducing an established traditional Chinese medicine into a burgeoning field. AIM OF THE REVIEW: Musculoskeletal diseases (MSDs) present significant challenges to healthcare systems worldwide. Previous studies have demonstrated the high efficacy and prospects of Salvia miltiorrhiza and its active ingredients for treatment of MSDs. This review aims to illuminate the newfound applications of Salvia miltiorrhiza and its active ingredients in the treatment of various MSDs, effectively bridging the gap between an established medicine and an emerging field. METHODS: In this review, previous studies related to Salvia miltiorrhiza and its active ingredients on the treatment of MSD were collected, the specific active ingredients of Salvia miltiorrhiza were summarized, the effects of Salvia miltiorrhiza and its active ingredients for the treatment of MSDs, as well as their potential molecular mechanisms were reviewed and discussed. RESULTS: Based on previous publications, Salvianolic acid A, salvianolic acid B, tanshinone IIA are the representative active ingredients of Salvia miltiorrhiza. Their application has shown significant beneficial outcomes in osteoporosis, fractures, and arthritis. Salvia miltiorrhiza and its active ingredients protect against MSDs by regulating different signaling pathways, including ROS, Wnt, MAPK, and NF-κB signaling. CONCLUSION: Salvia miltiorrhiza and its active ingredients demonstrate promising potential for bone diseases and have been explored across a wide variety of MSDs. Further exploration of Salvia miltiorrhiza's pharmacological applications in MSDs holds great promise for advancing therapeutic interventions and improving the lives of patients suffering from these diseases.

3.
Meat Sci ; 201: 109174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37054497

RESUMO

This study investigated the effects of adenosine (ADO) and adenosine 5'-monophosphate (AMP) supplementation on the growth performance, carcass characteristics, meat quality, and lipid metabolism in adipose tissues of finishing pigs. The pigs were allocated to three treatment groups: the control diet, 0.2%ADO diet, or 0.2%AMP diet. Compared with CON group (CON), both ADO and AMP groups increased in carcass straight length (P < 0.05) and decreased in drip loss (P < 0.05), while AMP group tended to increase in redness value (P = 0.05) and decreased in free amino acid content in longissimus thoracis (LT) muscle (P < 0.05). Additionally, ADO or AMP supplementation increased the ADO or AMP content in serum, adipose tissue, and LT muscle (P < 0.05), as well as the protein level of adenosine 2A receptor (A2a) in adipose tissue (P < 0.05). Moreover, both ADO and AMP groups showed an increase in the expression of lipolysis genes (ATGL and HSL) in adipose tissue (P < 0.05). Overall, AMP supplementation could improve meat quality, and ADO and AMP supplementation regulate the lipid metabolism of finishing pigs.


Assuntos
Composição Corporal , Metabolismo dos Lipídeos , Suínos , Animais , Dieta/veterinária , Tecido Adiposo/química , Carne/análise , Suplementos Nutricionais , Ração Animal/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-36582768

RESUMO

Colorectal cancer (CRC) is the most common cancer worldwide and develops due to a broad range of causative factors. Pingxiao (PX) formula and Xihuang (XH) formula are two commonly used drugs to treat CRC, especially as an alternative therapy for those patients who could not suffer surgery, chemotherapy, or immunotherapy, namely, elder or advanced CRC patients. However, the pertinent pharmacological mechanisms are still elusive. The investigation was designed to explain the pharmacological mechanisms of the PX formula. A murine model of CRC was established by injecting CT26.WT cells into the caecum of 4-week-old male Balb/c mice, following PX or XH treatment for 30 days. Network pharmacology analysis combined with weighted gene coexpression network analysis (WGCNA) predicted the pharmacological mechanisms and therapeutic value. High-throughput 16S rRNA sequencing determined the alterations in the gut microbiota communities. Western blotting, immunofluorescence, and flow cytometry examined the influence of PX on the tumor microenvironment (TME). Injection of CT26.WT-induced CRC in Balb/c mice was markedly attenuated by PX treatment. Compared with XH administration, PX exhibited a stronger antitumor effect, such as smaller tumor volume, lower interleukin 17 (IL-17), IL-6 and tumor necrosis factor-alpha (TNFα) serum levels, and higher interferon-gamma (IFN-γ) concentration. Network pharmacology analysis demonstrated that both PX and XH targets were enriched in cancers and inflammatory responses. RNA sequencing confirmed that PX treatment induced cancer cell apoptosis and inhibited inflammatory reactions within the tumor. Moreover, the PX formula considerably restored homeostasis of the gut microbiota, which was not observed in the XH group. PX targets, those associated with the survival probability of CRC patients, correlated with macrophage (Mφ) infiltration, which presented an independent risk factor for the CRC outcome. PX treatment promoted the transition of alternatively activated Mφs (M2 Mφs) to classically activated Mφs (M1 Mφs). Moreover, the peritoneal Mφs from the PX group inhibited the migration of CW26.WT cells, as evidenced by the wound healing experiment and transwell assay, which was consistent with the decreased expression of the vascular endothelial growth factor (VEGF). Furthermore, the coculturing system confirmed that PX-treated Mφs suppressed colorectal tumor-derived organoid proliferation. PX formula exhibits a potential antitumor effect against CRC by suppressing the colonization of pathological microorganisms, reshaping Mφ effector functions and hence inhibiting cancer cell proliferation.

5.
Phytomedicine ; 106: 154438, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108373

RESUMO

BACKGROUND: Ulcerative colitis (UC) is pathologically characterized by an inappropriate immune response to the gut commensal microbes accompanied by persistent epithelial barrier dysfunction, and its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. Fructus ligustri lucidi (FLL) has a long historical application in traditional Chinese medicine due to its various pharmacological effects, including antioxidation and anti-inflammation. The present study aimed to explore the molecular and cellular mechanisms of FLL in treating colitis. METHODS: A high-performance liquid chromatography (HPLC) combined with ultraviolet (UV) was performed to validate the quality of FLL; Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) based on The Cancer Genome Atlas (TCGA) database predicted the therapeutic value of FLL against UC and CAC; 2% dextran sodium sulfate (DSS) was administered to mice to establish murine models of experimental colitis, and FLL was given for the next 14 days at different concentrations; 16S rRNA sequencing and untargeted metabolomics were performed on fecal samples to delineate the alteration in microbiome profile; Western blotting, flow cytometry, and immunocytochemistry experiments were conducted to confirm the predicted cellular mechanisms. RESULTS: Network pharmacology analysis and WGCNA predicted that the targets of the FLL were associated with the progression of UC and the survival of patients with colorectal cancer by regulating tumor necrosis factor (TNF) and IL-17 signaling pathways, immune cell functions, responses to bacterial and reactive oxygen species (ROS), and cell proliferation. In vivo experiments corroborated that the high dose of FLL significantly attenuated the progression of experimental colitis by reversing the weight loss and bloody stool, reconstructing the integrity of colorectal epithelium, and suppressing the concentration of pro-inflammatory cytokines. Moreover, FLL treatment reduced the transition of macrophages (Mφs) to the proinflammatory phenotype and promoted Mφs-regulated wound healing, and suppressed the production of ROS in intestinal organoids (IOs) and crypts. 16S rRNA and untargeted metabolomics showed that the administration of FLL inhibited DSS-caused colonization of the potentially pathogenic gut microorganisms and reversed DSS-influenced metabolic profile. CONCLUSION: FLL is a potent anti-colitis drug by suppressing inflammation and rescuing dysbiosis.


Assuntos
Colite Ulcerativa , Colite , Ligustrum , Microbiota , Animais , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/patologia , Interleucina-17 , Ligustrum/química , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Espécies Reativas de Oxigênio/metabolismo , Fatores de Necrose Tumoral/uso terapêutico
6.
J Ethnopharmacol ; 298: 115647, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987415

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY: The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS: Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS: XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION: The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.


Assuntos
Colite Ulcerativa , Colite , Animais , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Disbiose/metabolismo , Inflamação/patologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , RNA Ribossômico 16S
7.
Xenobiotica ; 52(4): 353-359, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35621148

RESUMO

This study aimed to assess the effects of total flavonoid extracts (TFDG) and the monomers of Daphne genkwa on the CYP2C8 activity in vitro and in vivo.The 50% inhibitory concentration (IC50) values were used to determine the inhibitory effect of TFDG and its four monomers for the CYP2C8 activity by recombinant human CYP2C8 (RHCYP2C8) yeast microsome system in vitro, and the volume per dose index (VDI) was predicted the potential inhibition in vivo. The effects of multiple-dose administration of TFDG on the pharmacokinetic parameters of rosiglitazone in rats were evaluated.The IC50 values of apigenin, luteolin, hydroxy-genkwanin, genkwanin, and TFDG were 7.27 µmol/L, 11.9 µmol/L, 28.1 µmol/L, 127 µmol/L, and 13.4 µg/mL, respectively. The VDI values of apigenin and TFDG were 2.15 L and 6.60 L. In vivo study, compared with the control group, the elimination phase half-life and mean residence time in the TFDG treatment group were significantly increased by 96.9% and 106.8% (p <.05), respectively.Apigenin showed a moderate inhibitory effect on the CYP2C8 activity in vitro, while the other three monomers were weak inhibitors. TFDG had a strong inhibitory effect on CYP2C8 in vitro and in vivo, and also inhibited the metabolism of rosiglitazone in rats.


Assuntos
Daphne , Animais , Apigenina/farmacologia , Citocromo P-450 CYP2C8 , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Ratos , Rosiglitazona/farmacologia
8.
Front Pharmacol ; 12: 710169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552485

RESUMO

Rheumatoid arthritis (RA) is closely associated with periarticular osteopenia and leads to a high risk of generalized osteoporosis. Although glucocorticoid (GC) treatment ameliorates joint degradation and manages inflammation in RA, GC application may induce further bone quality deterioration in RA patients. Current treatments for RA lack relevant strategies for the prevention and treatment of osteopenia in RA. In this study, we aimed to investigate whether salvianolate treatment ameliorated osteopenia in prednisone-treated RA rats. Lewis rats with collagen-induced arthritis (CIA) were administered prednisone (PDN) or PDN plus salvianolate (PDN+Sal) treatment for 90 days. The effects of Sal were investigated in PDN-treated CIA rats. To further evaluate the effects of Sal under inflammatory conditions, we investigated the effects of Sal treatment on the TNF-α-induced inflammatory response in MC3T3-E1 osteoblasts. Bone histomorphometry, bone mineral density (BMD), bone biomechanical properties, micro-computed tomography (micro-CT), immunohistochemistry, RT-PCR and western blot analyses were performed to evaluate the effects of Sal. The results demonstrated that RA induced bone loss and bone quality deterioration, with high bone turnover in CIA rats. PDN+Sal treatment significantly increased BMD and trabecular/cortical bone mass, suppressed inflammation, and improved bone biomechanical properties compared to CIA control and PDN treatment. PDN+Sal treatment significantly suppressed bone resorption and the RANKL and RANKL/OPG ratios compared to PDN. PDN+Sal and PDN treatment significantly inhibited TNF-α by 82 and 83%, respectively, and both suppressed inflammation in CIA rats. However, there was no significant difference between PDN+Sal and PDN treatment alone in regard to bone formation parameters or the management of inflammation and arthropathy. Sal significantly increased Osterix, OPN, and Col1a1 while decreasing RANKL, TRAF6, and TRAIL gene in TNF-α-induced MC3T3-E1 osteoblasts. Sal significantly increased Osterix, OPN and RUNX2 while decreasing NF-κB, TRAF6 and IL-1ß protein in TNF-α-induced MC3T3-E1 osteoblasts. The results suggested that salvianolate treatment ameliorated osteopenia and improved bone quality in prednisone-treated RA rats, and the potential mechanism may be related to the regulation of the RANKL/RANK/OPG signaling pathway, TRAIL-TRAF6-NFκB signal axis, and downregulation of inflammatory cytokines. Salvianolate could be used as a promising supplemental therapeutic strategy to ameliorate osteopenia and improve bone quality in GC-treated RA patients.

9.
J Chromatogr Sci ; 58(9): 804-813, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32808026

RESUMO

Naozhenning (NZN) granule, a Chinese herbal formula, is widely used to treat craniocerebral trauma and promote functional recovery. In our previous study, the chemical components, as well as the serum metabolites in the male Sprague-Dawley rats of the NZN granule after oral administration were characterized. In this study, the urine metabolites in the male Sprague-Dawley rats were further investigated by ultrahigh-performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry. In order to identify the urine metabolites comprehensively, three sample preparation methods were used, including solid-phase extraction, protein precipitation method and solvent partition. Based on the accurate molecular weight and the fragmentation information from the MS spectra, a total of 76 urine metabolites were identified, which including 17 prototypes and 59 metabolites. The results showed that the detected urine metabolites were different for the different pretreatment methods, as some metabolites could only be detected in the particular pretreatment method. In addition, the metabolic processes of the components from NZN granule to the serum and urine were also elucidated and discussed. The results will provide useful information for further studying the relationship between the chemical components and pharmacological activity of NZN granule.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Administração Oral , Animais , Precipitação Química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Flavonoides/metabolismo , Flavonoides/urina , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/urina , Iridoides/metabolismo , Iridoides/urina , Masculino , Espectrometria de Massas/métodos , Ratos , Ratos Sprague-Dawley , Extração em Fase Sólida , Terpenos/metabolismo , Terpenos/urina
10.
J Ethnopharmacol ; 246: 112247, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31542470

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Naozhenning granule (NZN), a widely traditional Chinese medicine (TCM) prescription with a long history of clinical, which is mainly used in the treatment of concussion, cerebral post-traumatic syndrome, consists of Di Huang (Radix of Rehmannia glutinosa (Gaertn.) DC.), Dang Gui (Radix of Angelica sinensis (Oliv.) Diels), Chen Pi (Pericarpium of Citrus reticulata Blanco), Dan shen (Radix of Salvia Miltiorrhiza Bunge.), Di Long (Pheretima aspergillum (E. Perrier)), Mu Dan Pi (Cortex of Paeonia suffruticosa Andrews), Suan Zao Ren (Semen of Ziziphus jujuba Mill.), Chuan Xiong (Rhizoma of Ligusticum striatum DC.), Zhu Ru (Phyllostachys nigra (Lodd. Ex Lindl.) Munro), Bai Zi Ren (Semen of Platycladus orientalis (L.) Franco) and Fu Ling (sclerotium of Poria cocos (Schw.)Wolf). AIM OF THE STUDY: This study aimed to unravel the mechanism and material basis of NZN against traumatic brain injury. MATERIALS AND METHODS: In this study, a 1H nuclear magnetic resonance (NMR) based metabolomic approach combined with systemsDock was employed to study the protective effect of NZN against traumatic brain injury using a cerebral concussion rat model. The morris water maze test and biochemical indexes were used to evaluate the efficacy of NZN. RESULTS: The results of morris water maze test suggested NZN can improve the spatial learning and memory of model rats, and the superoxide dismutas (SOD) and malonyldialdehyde (MDA) level indicated that the effect of NZN was related with the regulation of oxidative stress. Multivariate analysis revealed that the effect of NZN was related with regulation of 18 brain metabolites, and the corresponding metabolic pathways were further revealed by MetPA analysis. 13 serum absorbed components were found to hit the targets both related with the metabolic regulation and cerebral trauma through systemsDock-aided molecular docking experiments, and these compounds might be served as the active compounds in NZN against cerebral trauma. CONCLUSION: 1H-NMR based metabolomics and molecular docking provided the insights for the synergistic mechanisms and the potential active compounds of NZN in treating cerebral trauma. However, the bioactive compounds and their synergistic effect need to be further validated.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Simulação de Acoplamento Molecular , Animais , Biomarcadores , Medicamentos de Ervas Chinesas/uso terapêutico , Espectroscopia de Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley , Software
11.
Drug Des Devel Ther ; 10: 2535-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563234

RESUMO

AIM: To investigate the bone-protective effects of salvianolate (Sal), a total polyphenol from Radix Salviae miltiorrhizae, on bone tissue in the spontaneous lupus-prone mouse model, B6.MRL-Fas (lpr) /J, undergoing glucocorticoid (GC) treatment. METHODS: Fifteen-week-old female B6.MRL-Fas (lpr) /J mice were administered either a daily dose of saline (lupus group), prednisone 6 mg/kg (GC group), Sal 60 mg/kg (Sal group); or GC plus Sal (GC + Sal group) for a duration of 12 weeks. Age-matched female C57BL/6J wild-type (WT) mice were used for control. Micro-computed tomography assessments, bone histomorphometry analysis, bone biomechanical test, immunohistochemistry and immunoblotting analysis for bone markers, and renal histology analysis were performed to support our research endeavor. RESULTS: Lupus mice developed a marked bone loss and deterioration of mechanical properties of bone due to an increase in bone resorption rather than suppression of bone formation. GC treatment strongly inhibited bone formation in lupus mice. Sal treatment significantly attenuated osteogenic inhibition, and also suppressed hyperactive bone resorption, which recovered the bone mass and mechanical properties of bone in both the untreated and GC-treated lupus mice. CONCLUSION: The data support further preclinical investigation of Sal as a potential therapeutic strategy for the treatment of systemic lupus erythematosus-related bone loss.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Glucocorticoides/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Extratos Vegetais/farmacologia , Animais , Osso e Ossos/patologia , Feminino , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Endogâmicos , Microtomografia por Raio-X
12.
J Orthop Translat ; 4: 75-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30035068

RESUMO

BACKGROUND/OBJECTIVE: Alpinia officinarum Hance (AOH) is a traditional herbal medicine specific to south China and serves as a civil medication application of an antioxidant. Growing evidence demonstrates that antioxidants are beneficial for the treatment of osteoporosis. This study was designed to investigate the antiosteoporotic effects of total extracts from AOH in ovariectomised (OVX) rats and the different fractions in AOH on primary osteoblasts activities. METHODS: The total extract of AOH was extracted by refluxing using 95% ethanol, then the five fractions (F1-F5) were separated from AOH using thin-layer chromatography according to polarity from high to low, and the galangin content was determined using high performance liquid chromatography. In an in vivo study, 36 4-month-old female Sprague-Dawley rats were used as a Sham-operated group, OVX with vehicle (OVX), OVX with epimedium flavonoids (EF, 150 mg/kg/d), and OVX with AOH (AOH, 300 mg/kg/d), respectively. Daily oral administration started on Day 3 after OVX and lasted for 12 weeks. In the in vitro study, primary osteoblasts were incubated with AOH, galangin, and five different fractions (F1-F5) with or without hydrogen peroxide (H2O2), respectively. RESULTS: Treatment with AOH significantly attenuated osteopenia accompanied by a decreased percentage of osteoclast perimeter and bone formation rate per unit of bone surface, enhanced the bone strength, and prevented the deterioration of trabecular microarchitecture associated with a decrease in biochemical parameters of oxidative stress. Furthermore, treatment with AOH, F3, F4, and galangin increased cell viability, differentiation, and mineralisation in osteoblasts with or without H2O2 and rescued the deleterious effects of H2O2 on cell apoptosis and intracellular reactive oxygen species level. The effects on osteoblast formation were highly aligned with the amounts of flavonoids within AOH. CONCLUSION: These data demonstrate that ethanol extracts from AOH significantly reverse bone loss, partially by increasing bone formation, and by suppressing bone resorption associated with antioxidant effects, suggesting that AOH can be developed as a promising agent for the prevention and treatment of osteoporosis.

13.
PLoS One ; 7(4): e34647, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493705

RESUMO

Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10(-6) mol/L to 10(-7) mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased ß-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.


Assuntos
Benzofuranos , Osso e Ossos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/prevenção & controle , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Benzofuranos/administração & dosagem , Benzofuranos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/irrigação sanguínea , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Prednisona/administração & dosagem , Prednisona/efeitos adversos , Ratos , Ratos Sprague-Dawley , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA