Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Genet Genomics ; 49(5): 481-491, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331929

RESUMO

In plants, lipid transfer proteins (LTPs) transport pollen wall constituents from the tapetum to the exine, a process essential for pollen wall development. However, the functional cooperation of different LTPs in pollen wall development is not well understood. In this study, we have identified and characterized a grass-specific LTP gene, OsLTP47, an important regulator of pollen wall formation in rice (Oryza sativa). OsLTP47 encodes a membrane-localized LTP and in vitro lipid-binding assays confirms that OsLTP47 has lipid-binding activity. Dysfunction of OsLTP47 causes disordered lipid metabolism and defective pollen walls, leading to male sterility. Yeast two-hybrid and pull-down assays reveal that OsLTP47 physically interacts with another LTP, OsC6. These findings suggest that the plasma membrane-localized OsLTP47 may function as a mediator in a lipid transfer relay through association with cytosolic and/or locular OsC6 for pollen wall development and that various LTPs may function in a coordinated manner to transport lipid molecules during pollen wall development.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas/genética , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen
2.
J Exp Bot ; 71(14): 4033-4041, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32270203

RESUMO

The temporary callose layer surrounding the tetrads of microspores is critical for male gametophyte development in flowering plants, as abnormal callose deposition can lead to microspore abortion. A sophisticated signaling network regulates callose biosynthesis but these pathways are poorly understood. In this study, we characterized a rice male-sterile mutant, oslecrk5, which showed defective callose deposition during meiosis. OsLecRK5 encodes a plasma membrane-localized lectin receptor-like kinase, which can form a dimer with itself. Moreover, normal anther development requires the K-phosphorylation site (a conserved residue at the ATP-binding site) of OsLecRK5. In vitro assay showed that OsLecRK5 phosphorylates the callose synthesis enzyme UGP1, enhancing callose biosynthesis during anther development. Together, our results demonstrate that plasma membrane-localized OsLecRK5 phosphorylates UGP1 and promotes its activity in callose biosynthesis in rice. This is the first evidence that a receptor-like kinase positively regulates callose biosynthesis.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Oryza/genética , Oryza/metabolismo , Pólen/metabolismo
3.
Mol Plant ; 11(12): 1440-1448, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30296601

RESUMO

Carotenoids are important phytonutrients with antioxidant properties, and are widely used in foods and feedstuffs as supplements. Astaxanthin, a red-colored ketocarotenoid, has strong antioxidant activity and thus can benefit human health. However, astaxanthin is not produced in most higher plants. Here we report the bioengineering of astaxanthin biosynthesis in rice endosperm by introducing four synthetic genes, sZmPSY1, sPaCrtI, sCrBKT, and sHpBHY, which encode the enzymes phytoene synthase, phytoene desaturase, ß-carotene ketolase, and ß-carotene hydroxylase, respectively. Transgneic overexpression of two (sZmPSY1 and sPaCrtI), three (sZmPSY1, sPaCrtI and sCrBKT), and all these four genes driven by rice endosperm-specific promoters established the carotenoid/ketocarotenoid/astaxanthin biosynthetic pathways in the endosperm and thus resulted in various types of germplasm, from the yellow-grained ß-carotene-enriched Golden Rice to orange-red-grained Canthaxanthin Rice and Astaxanthin Rice, respectively. Grains of Astaxanthin Rice were enriched with astaxanthin in the endosperm and had higher antioxidant activity. These results proved that introduction of a minimal set of four transgenes enables de novo biosynthesis of astaxanthin in the rice endosperm. This work provides a successful example for synthetic biology in plants and biofortification in crops; the biofortified rice products generated by this study could be consumed as health-promoting foods and processed to produce dietary supplements.


Assuntos
Endosperma/metabolismo , Engenharia Genética , Oryza/genética , Oryza/metabolismo , Antioxidantes/metabolismo , Biofortificação , Cantaxantina/biossíntese , Cantaxantina/metabolismo , Plantas Geneticamente Modificadas , Xantofilas/biossíntese , Xantofilas/metabolismo , beta Caroteno/biossíntese , beta Caroteno/metabolismo
4.
Nat Commun ; 8(1): 1310, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101356

RESUMO

Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.


Assuntos
Oryza/genética , Infertilidade das Plantas/genética , Alelos , Variações do Número de Cópias de DNA , DNA de Plantas/genética , Dosagem de Genes , Técnicas de Inativação de Genes , Genes de Plantas , Variação Estrutural do Genoma , Hibridização Genética , Modelos Genéticos , Oryza/classificação , Oryza/fisiologia , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Especificidade da Espécie
5.
J Integr Plant Biol ; 59(9): 669-679, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28636095

RESUMO

Hybrids between the indica and japonica subspecies of rice (Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.


Assuntos
Hibridização Genética , Oryza/fisiologia , Melhoramento Vegetal/métodos , Infertilidade das Plantas/genética , Sistemas CRISPR-Cas , Genes de Plantas , Interferência de RNA
7.
Nat Commun ; 5: 4884, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208476

RESUMO

Thermosensitive genic male-sterile (TGMS) lines, which are male-sterile at restrictive (high) temperatures but male-fertile at permissive (low) temperatures, have been widely used in breeding two-line hybrid rice (Oryza sativa L.). Here we find that mutation of thermosensitive genic male sterile 5 (tms5) in rice causes the TGMS trait through a loss of RNase Z(S1) function. We show that RNase Z(S1) processes the mRNAs of three ubiquitin fusion ribosomal protein L40 (UbL40) genes into multiple fragments in vitro and in vivo. In tms5 mutants, high temperature results in increased levels of UbL40 mRNAs. Overaccumulation of UbL40 mRNAs causes defective pollen production and male sterility. Our results uncover a novel mechanism of RNase Z(S1)-mediated UbL40 mRNA regulation and shows that loss of this regulation produces TGMS in rice, a finding with potential applications in hybrid crop breeding.


Assuntos
Endorribonucleases/genética , Temperatura Alta , Oryza/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , RNA Mensageiro/metabolismo , Endorribonucleases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Proteínas Ribossômicas/metabolismo , Temperatura
8.
J Integr Plant Biol ; 55(8): 710-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23570336

RESUMO

Plant male reproductive development is a complex biological process, but the underlying mechanism is not well understood. Here, we characterized a rice (Oryza sativa L.) male sterile mutant. Based on map-based cloning and sequence analysis, we identified a 1,459-bp deletion in an adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene, OsABCG15, causing abnormal anthers and male sterility. Therefore, we named this mutant osabcg15. Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis II stage) to stage 10 (late microspore stage). Two genes CYP704B2 and WDA1, involved in the biosynthesis of very-long-chain fatty acids for the establishment of the anther cuticle and pollen exine, were downregulated in osabcg15 mutant, suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules. Consistently, histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration, leading to rapid degredation of young microspores. The results suggest that OsABCG15 plays a critical role in exine formation and pollen development, similar to the homologous gene of AtABCG26 in Arabidopsis. This work is helpful to understand the regulatory network in rice anther development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Oryza/fisiologia , Infertilidade das Plantas/genética , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , Ácidos Graxos/biossíntese , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Plantas/genética
10.
Nat Genet ; 45(5): 573-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23502780

RESUMO

Plant cytoplasmic male sterility (CMS) results from incompatibilities between the organellar and nuclear genomes and prevents self pollination, enabling hybrid crop breeding to increase yields. The Wild Abortive CMS (CMS-WA) has been exploited in the majority of 'three-line' hybrid rice production since the 1970s, but the molecular basis of this trait remains unknown. Here we report that a new mitochondrial gene, WA352, which originated recently in wild rice, confers CMS-WA because the protein it encodes interacts with the nuclear-encoded mitochondrial protein COX11. In CMS-WA lines, WA352 accumulates preferentially in the anther tapetum, thereby inhibiting COX11 function in peroxide metabolism and triggering premature tapetal programmed cell death and consequent pollen abortion. WA352-induced sterility can be suppressed by two restorer-of-fertility (Rf) genes, suggesting the existence of different mechanisms to counteract deleterious cytoplasmic factors. Thus, CMS-related cytoplasmic-nuclear incompatibility is driven by a detrimental interaction between a newly evolved mitochondrial gene and a conserved, essential nuclear gene.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Genes de Plantas/genética , Mitocôndrias/metabolismo , Oryza/genética , Infertilidade das Plantas/genética , Pólen/genética , Sequência de Aminoácidos , Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas , Genoma Mitocondrial , Immunoblotting , Mitocôndrias/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
11.
J Integr Plant Biol ; 54(12): 967-78, i, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025662

RESUMO

Anther development and male fertility are essential biological processes for flowering plants and are important for crop seed production. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Rice (Oryza sativa L.) male sterility phenotypes, including genic male sterility, hybrid male sterility, and cytoplasmic male sterility, are generally caused by mutations of fertility-related genes, by incompatible interactions between divergent allelic or non-allelic genes, or by genetic incompatibilities between cytoplasmic and nuclear genomes. Here, we review the recent advances in the molecular basis of anther development and male fertility-sterility conversion in specific genetic backgrounds, and the interactions with certain environmental factors. The highlighted findings in this review have significant implications in both basic studies and rice genetic improvement.


Assuntos
Oryza/fisiologia , Pólen , Oryza/genética , Reprodução
12.
Cell Res ; 22(4): 649-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22349461

RESUMO

Photoperiod- and thermo-sensitive genic male sterility (PGMS and TGMS) are the core components for hybrid breeding in crops. Hybrid rice based on the two-line system using PGMS and TGMS lines has been successfully developed and applied widely in agriculture. However, the molecular mechanism underlying the control of PGMS and TGMS remains obscure. In this study, we mapped and cloned a major locus, p/tms12-1 (photo- or thermo-sensitive genic male sterility locus on chromosome 12), which confers PGMS in the japonica rice line Nongken 58S (NK58S) and TGMS in the indica rice line Peiai 64S (PA64S, derived from NK58S). A 2.4-kb DNA fragment containing the wild-type allele P/TMS12-1 was able to restore the pollen fertility of NK58S and PA64S plants in genetic complementation. P/TMS12-1 encodes a unique noncoding RNA, which produces a 21-nucleotide small RNA that we named osa-smR5864w. A substitution of C-to-G in p/tms12-1, the only polymorphism relative to P/TMS12-1, is present in the mutant small RNA, namely osa-smR5864m. Furthermore, overexpression of a 375-bp sequence of P/TMS12-1 in transgenic NK58S and PA64S plants also produced osa-smR5864w and restored pollen fertility. The small RNA was expressed preferentially in young panicles, but its expression was not markedly affected by different day lengths or temperatures. Our results reveal that the point mutation in p/tms12-1, which probably leads to a loss-of-function for osa-smR5864m, constitutes a common cause for PGMS and TGMS in the japonica and indica lines, respectively. Our findings thus suggest that this noncoding small RNA gene is an important regulator of male development controlled by cross-talk between the genetic networks and environmental conditions.


Assuntos
Oryza/genética , Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas , Mutação Puntual , Pequeno RNA não Traduzido/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fotoperíodo , Infertilidade das Plantas/fisiologia , Pólen/genética , Pólen/fisiologia , Pequeno RNA não Traduzido/fisiologia , Temperatura
13.
Proc Natl Acad Sci U S A ; 105(48): 18871-6, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033192

RESUMO

Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.


Assuntos
Alelos , Quimera/genética , Oryza/genética , Infertilidade das Plantas/genética , Sequência de Aminoácidos , Cruzamento , Genes de Plantas , Genótipo , Haplótipos , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/ultraestrutura , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA