Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 91: 153686, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333330

RESUMO

BACKGROUND: A crosstalk exists between diabetes and Alzheimer's disease (AD), and diabetic encephalopathy displays AD-like disorders. Sarsasapogenin (Sar) has strong anti-inflammatory efficacy, showing neuroprotection and memory-enhancement effects. PURPOSE: This study aims to verify the ameliorative effects of Sar on diabetic encephalopathy in vivo and in vitro, and to clarify the mechanisms from attenuation of AD-like pathology. METHODS: Streptozotocin-induced type 1 diabetic rats and high glucose-cultured SH-SY5Y cells were used in this study. After Sar treatment (20 and 60 mg/kg) for consecutive 9 weeks, Morris water maze and novel object recognition tasks were performed. Hematoxylin-eosin staining was used for examining loss of neurons in CA1 area and ki67 expression for reflecting neurogenesis in DG area of hippocampus. Aß production pathway and tau phosphorylation kinase cascade were examined in these two models. RESULTS: Sar improved learning and memory ability, loss of neurons and reduction of neurogenesis in the hippocampus of diabetic rats. Moreover, Sar suppressed Aß overproduction due to up-regulation of BACE1 in protein and mRNA and tau hyperphosphorylation from inactivation of AKT/GSK-3ß cascade in the hippocampus and cerebral cortex of diabetic rats and high glucose-cultured SH-SY5Y cells, and PPARγ antagonism abolished the effects of Sar on key molecules in the two pathways. Additionally, it was found that high glucose-stimulated Aß overproduction was prior to tau hyperphosphorylation in neurons. CONCLUSION: Sar alleviated diabetic encephalopathy, which was obtained through inhibitions of Aß overproduction and tau hyperphosphorylation mediated by the activation of PPARγ signaling. Hence, Sar is a good candidate compound for AD-like disorders.


Assuntos
Doença de Alzheimer , Encefalopatias/tratamento farmacológico , Diabetes Mellitus Experimental , Espirostanos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , PPAR gama , Fosforilação , Ratos , Proteínas tau/metabolismo
2.
Biochem Pharmacol ; 192: 114675, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252407

RESUMO

Podocyte injury following abnormal podocyte autophagy plays an indispensable role in diabetic nephropathy (DN), therefore, restoration of podocyte autophagy is considered as a feasible strategy for the treatment of DN. Here, we investigated the preventive effects of sarsasapogenin (Sar), the main active ingredient in Anemarrhena asphodeloides Bunge, on the podocyte injury in diabetic rats, and tried to illustrate the mechanisms underlying the effects in high glucose (HG, 40 mM)-treated podocytes (MPs). Diabetes model was established in rats with single streptozocin (60 mg· kg-1) intraperitoneal administration. The rats were then treated with Sar (20, 60 mg· kg-1· d-1, i.g.) or a positive control drug insulin (INS) (40 U· kg-1· d-1, i.h.) for 10 weeks. Our results showed that both Sar and insulin precluded the decreases of autophagy-related proteins (ATG5, Beclin1 and LC3B) and podocyte marker proteins (podocin, nephrin and synaptopodin) in the diabetic kidney. Furthermore, network pharmacology was utilized to assess GSK3ß as the potential target involved in the action of Sar on DN and were substantiated by significant changes of GSK3ß signaling in the diabetic kidney. The underlying protection mechanisms of Sar were explored in HG-treated MPs. Sar (20, 40 µM) or insulin (50 mU/L) significantly increased the expression of autophagy- related proteins and podocyte marker proteins in HG-treated MPs. Furthermore, Sar or insulin treatment efficiently regulatedphosphorylation at activation and inhibition sites of GSK3ß. To sum up, this study certifies that Sar meliorates experimental DN through targeting GSK3ß signaling pathway and restoring podocyte autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Glicogênio Sintase Quinase 3 beta/metabolismo , Podócitos/efeitos dos fármacos , Espirostanos/administração & dosagem , Animais , Autofagia/fisiologia , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Podócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
Phytother Res ; 35(6): 3167-3180, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33885189

RESUMO

Sarsasapogenin (Sar), a natural steroidal compound, shows neuroprotection, cognition-enhancement, antiinflammation, antithrombosis effects, and so on. However, whether Sar has ameliorative effects on diabetes-associated cognitive impairment remains unknown. In this study, we found that Sar ameliorated diabetes-associated memory impairment in streptozotocin-induced diabetic rats, evidenced by increased numbers of crossing platform and percentage of time spent in the target quadrant in Morris water maze tests, and suppressed the nucleotide-binding domain and leucine-rich repeat containing protein 1 (NLRP1) inflammasome in hippocampus and cerebral cortex. Furthermore, Sar inhibited advanced glycation end-products and its receptor (AGEs/RAGE) axis and suppressed up-regulation of thrombin receptor protease-activated receptor 1 (PAR-1) in cerebral cortex. On the other hand, Sar mitigated high glucose-induced neuronal damages, NLRP1 inflammasome activation, and PAR-1 up-regulation in high glucose-cultured SH-SY5Y cells, but did not affect thrombin activity. Moreover, the effects of Sar were similar to those of a selective PAR-1 antagonist vorapaxar. Further studies indicated that activation of the NLRP1 inflammasome and NF-κB mediated the effect of PAR-1 up-regulation in high glucose condition by using PAR-1 knockdown assay. In summary, this study demonstrated that Sar prevented memory impairment caused by diabetes, which was achieved through suppressing neuroinflammation from activated NLRP1 inflammasome and NF-κB regulated by cerebral PAR-1. HIGHLIGHTS: Sarsasapogenin ameliorated memory impairment caused by diabetes in rats. Sarsasapogenin mitigated neuronal damages and neuroinflammation by down-regulating cerebral PAR-1. The NLRP1 inflammasome and NF-κB signaling mediated the pro-inflammatory effects of PAR-1. Sarsasapogenin was a pleiotropic neuroprotective agent and memory enhancer in diabetic rodents.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Espirostanos/farmacologia , Animais , Linhagem Celular , Regulação para Baixo , Hipocampo/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
4.
Zool Res ; 42(1): 130-134, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377334

RESUMO

The Atlantic sea nettle ( Chrysaora quinquecirrha) has an important evolutionary position due to its high ecological value. However, due to limited sequencing technologies and complex jellyfish genomic sequences, the current C. quinquecirrha genome assembly is highly fragmented. Here, we used the most advanced high-throughput chromosome conformation capture (Hi-C) technology to obtain high-coverage sequencing data of the C. quinquecirrha genome. We then anchored these data to the previously published contig-level assembly to improve the genome. Finally, a high-continuity genome sequence of C. quinquecirrha was successfully assembled, which contained 1 882 scaffolds with a N50 length of 3.83 Mb. The N50 length of the genome assembly was 5.23 times longer than the previously released one, and additional analysis revealed that it had a high degree of genomic continuity and accuracy. Acquisition of the high-continuity genome sequence of C. quinquecirrha not only provides a basis for the study of jellyfish evolution through comparative genomics but also provides an important resource for studies on jellyfish growth and development.


Assuntos
Genoma , Cifozoários/genética , Animais , Evolução Biológica , Análise de Sequência de DNA/métodos
5.
Phytomedicine ; 78: 153314, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32882582

RESUMO

BACKGROUND: Sarsasapogenin (Sar) shows good effects on diabetic nephropathy (DN) through inhibition of the NLRP3 inflammasome, yet the potential mechanism is not well known. PURPOSE: This study was designed to explore the regulation of thrombin and/or its receptor protease-activated receptor 1 (PAR-1) on the NLRP3 inflammasome and NF-κB signaling in DN condition, and further expounded the molecular mechanism of Sar on DN. METHODS: Streptozotocin-induced diabetic rats were treated by gavage with Sar (0, 20 and 60 mg/kg) for consecutive 10 weeks. Then urine and serum were collected for protein excretion, creatinine, urea nitrogen, and uric acid assay reflecting renal functions, renal tissue sections for periodic acid-Schiff staining and ki67 expression reflecting cell proliferation, and renal cortex for the NLRP3 inflammasome and NF-κB signaling as well as thrombin/PAR-1 signaling. High glucose-cultured human mesangial cells (HMCs) were used to further investigate the effects and mechanisms of Sar. RESULTS: Sar markedly ameliorated the renal functions and mesangial cell proliferation in diabetic rats, and suppressed activation of the NLRP3 inflammasome and NF-κB in renal cortex. Moreover, Sar remarkably down-regulated PAR-1 in protein and mRNA levels but didn't affect thrombin activity in kidney, although thrombin activity was significantly decreased in the renal cortex of diabetic rats. Meanwhile, high glucose induced activation of the NLRP3 inflammasome and NF-κB, and increased PAR-1 expression while didn't change thrombin activity in HMCs; however, Sar co-treatment ameliorated all the above indices. Further studies demonstrated that PAR-1 knockdown attenuated activation of the NLRP3 inflammasome and NF-κB, and Sar addition strengthened these effects in high glucose-cultured HMCs. CONCLUSION: Sar relieved DN in rat through inhibition of the NLRP3 inflammasome and NF-κB by down-regulating PAR-1 in kidney.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Células Mesangiais/efeitos dos fármacos , Receptor PAR-1/metabolismo , Espirostanos/farmacologia , Animais , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Células Mesangiais/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrite/tratamento farmacológico , Nefrite/metabolismo , Ratos Sprague-Dawley , Receptor PAR-1/genética , Trombina/metabolismo
7.
Phytother Res ; 32(8): 1574-1582, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29682805

RESUMO

Rhizome of Anemarrhena asphodeloides Bunge (AA, family Liliaceae) has been widely used in China for thousands of years to treat febrile diseases and diabetes. Steroidal saponins from AA show good antidiabetes effects and ameliorate diabetic complications. This study was designed to investigate the effects of sarsasapogenin (Sar), a major sapogenin from AA, on diabetic nephropathy (DN) in rats, and to explore the possible mechanisms. Diabetic rats were divided into 3 groups treated orally with Sar (0, 20, or 60 mg/kg) and carboxymethylcellulose sodium, whereas normal rats for Sar (0 or 60 mg/kg) and carboxymethylcellulose sodium. We found that chronic treatment with Sar for 9 weeks significantly ameliorated renal dysfunction of diabetic rats, as evidenced by decreases in albuminuria, kidney weight index, serum uric acid, and morphologic changes such as extracellular matrix expansion and accumulation (fibronectin and collagen IV levels, etc.). Meanwhile, Sar treatment resulted in decreases in interleukin-18, NLRP3, and activated caspase 1 levels as well as advanced glycation endproducts (AGEs) and their receptor (RAGE) levels in the renal cortex of diabetic rats. However, Sar has no effects on the above indices in the normal rats. Therefore, Sar can markedly ameliorate diabetic nephropathy in rats via inhibition of NLRP3 inflammasome activation and AGEs-RAGE interaction.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Espirostanos/farmacologia , Anemarrhena/química , Animais , China , Diabetes Mellitus Experimental/complicações , Medicamentos de Ervas Chinesas/farmacologia , Produtos Finais de Glicação Avançada , Interleucina-18/metabolismo , Rim/efeitos dos fármacos , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Rizoma/química , Saponinas/farmacologia , Ácido Úrico/sangue
8.
Naunyn Schmiedebergs Arch Pharmacol ; 391(2): 159-168, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29275517

RESUMO

The aim of this study is to investigate effects and potential mechanisms of sarsasapogenin (Sar), an active component purified from Rhizoma Anemarrhenae, on high glucose-induced amyloid-beta (Aß) peptide overproduction in HT-22 cells. HT-22 cells were divided into normal glucose; high glucose (HG); HG co-treated with low, middle, and high concentration of Sar (1, 5, 25 µmol/L); and peroxisome proliferator-activated receptor γ (PPARγ) agonist (10 µmol/L pioglitazone). After treatment for 24 h, protein expression of Aß and ß-site Aß precursor protein cleaving enzyme 1 (BACE1) and activated PPARγ level were determined by Western blot; Aß42 levels were also measured by using both immunofluorescence and ELISA methods. BACE1 activity and mRNA level were assessed by fluorospectrophotometry and quantitative PCR, respectively. Cell viability was assayed with a CCK-8 kit. Elevated Aß expression and Aß42 level were found in HG-treated HT-22 cells, accompanied by increased BACE1 protein and mRNA levels as well as enzymatic activity, which was markedly attenuated by three concentrations of Sar and pioglitazone. Moreover, HG reduced nuclear PPARγ levels, which was reversed by middle and high concentrations of Sar as well as pioglitazone. PPARγ antagonist GW9662 (20 µmol/L) pretreatment reversed the effect of Sar on BACE1 protein expression in HG-cultured HT-22 cells. Additionally, Sar suppressed HG-induced decreases in cell viability of HT-22 cells. High glucose can induce an increase in Aß levels and a decrease in cell viability in HT-22 cells, while co-treatment with Sar improves these results, which is mediated likely through activation of PPARγ and subsequent downregulation of BACE1.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/biossíntese , Medicamentos de Ervas Chinesas/farmacologia , Glucose/toxicidade , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/biossíntese , Espirostanos/farmacologia , Animais , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Camundongos
9.
Phytomedicine ; 22(12): 1071-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26547529

RESUMO

BACKGROUND: Recently, extract of Ginkgo biloba leaves (GbE) have become widely known phytomedicines and have shown various pharmacological activities, including improvement of blood circulation, protection of oxidative cell damage, prevention of Alzheimer's disease, treatment of cardiovascular disease and diabetes complications. This study was designed to investigate the effects of an ethanolic GbE on renal fibrosis in diabetic nephropathy (DN) and to clarify the possible mechanism by which GbE prevents renal fibrosis. STUDY DESIGN: We investigated the protective effects of GbE on renal fibrosis in STZ-induced diabetic rats. Rats were randomized into six groups termed normal control, diabetes mellitus, low dose of GbE (50 mg/kg/d), intermediate dose of GbE (100 mg/kg/d), high dose of GbE (200 mg/kg/d) and rapamycin (1 mg/kg/d). METHODS: After 12 weeks, the rats were sacrificed and then fasting blood glucose (FBG), creatinine (Cr), blood urea nitrogen (BUN), urine protein, relative kidney weight, glycogen and collagen accumulation, and collagen IV and laminin expression were measured by different methods. The amounts of E-cadherin, α-SMA and snail, as well as the phosphorylation of Akt, mTOR and p70S6K in the renal cortex of rats, were examined by western blotting. RESULTS: Compared with diabetic rats, the levels of Cr, BUN, urine protein, relative kidney weight, accumulation of glycogen and collagen, and expression of collagen IV and laminin in the renal cortex were all decreased in GbE treated rats. In addition, GbE reduced the expression of E-cadherin, α-SMA, snail and the phosphorylation of Akt, mTOR and p70S6K in diabetic renal cortex. CONCLUSION: GbE can prevent renal fibrosis in rats with diabetic nephropathy, which is most likely to be associated with its abilities to inhibit the Akt/mTOR signaling pathway.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Ginkgo biloba/química , Nefropatias/prevenção & controle , Extratos Vegetais/farmacologia , Transdução de Sinais , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Fibrose/prevenção & controle , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo
10.
Phytother Res ; 29(2): 295-302, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25380391

RESUMO

This study was designed to investigate the effects of mangiferin on renal fibrosis, osteopontin production, and inflammation in the kidney of diabetic rats. Diabetes was induced through the single administration of streptozotocin (55 mg/kg, i.p.). Diabetic rats were treated with mangiferin (15, 30, and 60 mg/kg/day, i.g.) for 9 weeks. The kidney was fixed in 10% formalin for glomerulus fibrosis examination using Masson trichrome staining. Kidney and blood were obtained for assays of the associated biochemical parameters. Chronic mangiferin treatment prevented renal glomerulus fibrosis evidenced by decreases in Mason-stained positive area of glomeruli, protein expression of type IV collagen, and α-smooth muscle actin in the kidney of diabetic rats, in comparison with decreases in mRNA and protein expression of osteopontin as well as protein expression of cyclooxygenase 2 and NF-кB p65 subunit in the renal cortex of diabetic rats. Moreover, mangiferin reduced the levels of interleukin 1ß in both the serum and the kidney of diabetic rats. Our findings demonstrate that mangiferin prevents the renal glomerulus fibrosis of diabetic rats, which is realized through the suppression of osteopontin overproduction and inflammation likely via inactivation of NF-кB.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Glomérulos Renais/efeitos dos fármacos , Osteopontina/metabolismo , Xantonas/farmacologia , Actinas/metabolismo , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Nefropatias/patologia , Glomérulos Renais/patologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina , Fator de Transcrição RelA/metabolismo
11.
J Ethnopharmacol ; 139(1): 194-200, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22101084

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a well-known Chinese Materia Medica Rhizoma Anemarrhenae has multiple pharmacological activities including antipyretic, anti-inflammatory, anti-diabetic actions, etc. This study was designed to investigate effects of total saponins from Rhizoma Anemarrhenae (TS) on diabetes-associated cognitive decline in rats and influence on amyloid-beta (Aß) levels in brain and inflammation. MATERIALS AND METHODS: Diabetic rats induced by intraperitoneal administration of streptozotocin, were randomized into two groups: diabetes and TS-treated diabetes. Blood glucose and body weight were measured monthly and weekly, respectively. After seven weeks, cognitive performances were evaluated with Morris water maze. Then, brain was obtained for assay of Aß and TNF-α levels, and blood was collected for TNF-α assay. RESULTS: Aß(1-40), Aß(1-42) and TNF-α levels were dramatically (all P<0.01) increased both in temporal cortex and hippocampus of diabetic rats, coupled with impairment of cognition, compared with those of the control. Chronic TS (200mg/kg) treatment markedly (P<0.05) improved the learning ability of diabetic rats, and significantly (all P<0.05) reduced Aß(1-40), Aß(1-42) and TNF-α levels in cortex as well as Aß(1-40) level in hippocampus, whereas showed a decreased tendency for Aß(1-42) and TNF-α levels in hippocampus. Moreover, eight-week treatment with TS remarkably (P<0.05) inhibited the elevation of TNF-α level in serum of diabetic rats, and significantly (both P<0.01) decrease the fasting blood glucose level and increase the body weight of diabectic rats. CONCLUSION: Our findings demonstrate that diabetes-associated cognitive decline is, at least in part, due to brain Aß accumulation in diabetic condition, and efficacy of TS to diabetes-associated cognitive decline in rats is a sum of reduction of Aß accumulation and inflammation in brain as well as attenuation of major symptoms of diabetes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anemarrhena , Transtornos Cognitivos/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Saponinas/uso terapêutico , Anemarrhena/química , Animais , Glicemia/análise , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Fitoterapia , Ratos , Ratos Sprague-Dawley , Rizoma/química , Saponinas/isolamento & purificação , Saponinas/farmacologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
12.
Planta Med ; 76(1): 70-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19639536

RESUMO

The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/farmacocinética , Glucuronidase/metabolismo , Scutellaria baicalensis/química , Administração Oral , Animais , Área Sob a Curva , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Flavanonas/metabolismo , Flavonoides/administração & dosagem , Flavonoides/metabolismo , Hidrólise , Íleo/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Permeabilidade , Raízes de Plantas , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA