RESUMO
BACKGROUND AND OBJECTIVE: Given the potential association between oxidative stress, periodontitis and dental caries, whether dietary supplementation with antioxidants is beneficial for periodontitis and dental caries has been widely reported, but remains controversial. This study aims to clarify these relationships through two-sample Mendelian randomization (MR) analysis. METHODS: Circulating antioxidants (copper, selenium, zinc, ascorbate, ß-carotene, lycopene, retinol and vitamin E) were derived from absolute circulating antioxidants and circulating antioxidant metabolites. Summary data of periodontitis and dental caries were obtained from two separate databases, respectively. We performed inverse-variance weighted (IVW) analysis separately in different databases, followed by meta-analysis. The robustness of results was examined by sensitivity analyses, including three complementary MR methods, heterogeneity and pleiotropy tests, and PhenoScanner query. RESULTS: IVW analysis showed that elevated levels of absolute circulating retinol reduced the risk of periodontitis (GLIDE: OR = 0.41, 95% CI = 0.18-0.95, p = .038, power = 100%; FinnGen: OR = 0.15, 95% CI = 0.04-0.54, p = .004, power = 100%). The pooled OR for periodontitis risk per unit increase of retinol is 0.30 (95% CI = 0.15-0.61, p = .001, I2 = 40.3%, power = 100%). No significant associations were noted for genetically predicted circulating antioxidants and dental caries risk. The sensitivity analyses yielded similar estimates. CONCLUSION: This study demonstrates that a negative causality between circulating retinol and periodontitis risk, and null linkage between circulating antioxidants and dental caries risk, suggesting potential strategies for the prevention and control of periodontitis.
Assuntos
Antioxidantes , Cárie Dentária , Análise da Randomização Mendeliana , Periodontite , Vitamina A , Humanos , Periodontite/sangue , Periodontite/genética , Cárie Dentária/prevenção & controle , Cárie Dentária/sangue , Vitamina A/sangue , Dieta , Suplementos Nutricionais , Estresse Oxidativo , Vitamina E/sangueRESUMO
Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.
Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análiseRESUMO
Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.
Assuntos
Apoptose , Sinalização do Cálcio , Histonas , Macrófagos , Magnésio , Camundongos Endogâmicos C57BL , Fagocitose , Sepse , Animais , Fagocitose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Magnésio/metabolismo , Histonas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , Masculino , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Células RAW 264.7RESUMO
Acute lung injury (ALI) is a common and critical respiratory disorder caused by various factors, with viral infection being the leading contributor. Dehydroandrographolide (DAP), a constituent of the Chinese herbal plant Andrographis paniculata, exhibits a range of activities including anti-inflammatory, in vitro antiviral and immune-enhancing effects. This study evaluated the anti-inflammatory effects and pharmacokinetics (PK) profile of DAP in ALI mice induced by intratracheal instillation of Poly(I:C) (PIC). The results showed that oral administration of DAP (10-40â¯mg/kg) effectively suppressed the increase in lung wet-dry weight ratio, total cells, total protein content, accumulation of immune cells, inflammatory cytokines and neutrophil elastase levels in bronchoalveolar lavage fluid of PIC-treated mice. DAP concentrations, determined by an LC-MS/MS method, in plasma after receiving DAP (20â¯mg/kg) were unchanged compared to those in normal mice. However, DAP concentrations and relative PK parameters in the lungs were significantly altered in PIC-treated mice, exhibiting a relatively higher maximum concentration, larger AUC, and longer elimination half-life than those in the lungs of normal mice. These results demonstrated that DAP could improve lung edema and inflammation in ALI mice, and suggested that lung injury might influence the PK properties of DAP, leading to increased lung distribution and residence. Our study provides evidence that DAP displays significant anti-inflammatory activity against viral lung injury and is more likely to distribute to damaged lung tissue.
Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Líquido da Lavagem Broncoalveolar , Diterpenos , Poli I-C , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Diterpenos/farmacocinética , Diterpenos/farmacologia , Masculino , Camundongos , Andrographis/química , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Elastase de Leucócito/metabolismoRESUMO
Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.
Assuntos
Óxido de Alumínio , Cobalto , Compostos Férricos , Óxido de Magnésio , Nanocompostos , Sulfametoxazol , PeróxidosRESUMO
Pressure alters the nature of chemical bonds and triggers novel reactions. Here, we employed first-principles calculations combined with the CALYPSO structural search technique to reveal the charge transfer reversal between Ca and Te under high pressure in the calcium-tellurium compound (CaxTe1-x, x = 1/4, 1/3, 1/2, 2/3). We predict several new phases with conventional and unconventional compounds and found an unfamiliar phenomenon: the Ca-Te compounds will reverse charge transfer between Ca and Te atoms and decompose into elemental solids under pressure. The Bader charge analyses indicate that the Ca2+ ion gains electrons and becomes an anion under high pressure. This leads to a weakened electrostatic interaction between Ca and Te and ultimately results in decomposition. The calculated band occupation number suggests that the occupation of Ca 3d orbitals under high pressure corresponds to this atypical phenomenon. Our results demonstrated the reverse charge transfer between Ca and Te and, in addition, clarified the mechanism of CaxTe1-x decomposition into solid Ca and Te elements under high pressure, providing important insights into the evolution of the properties of alkaline-earth chalcogenide compounds under high pressure.
RESUMO
Breast cancer stem cells (BCSCs) are responsible for breast cancer metastasis, recurrence and treatment resistance, all of which make BCSCs potential drivers of breast cancer aggression. Ginsenoside Rg3, a traditional Chinese herbal medicine, was reported to have multiple antitumor functions. Here, we revealed a novel effect of Rg3 on BCSCs. Rg3 inhibits breast cancer cell viability in a dose- and time-dependent manner. Importantly, Rg3 suppressed mammosphere formation, reduced the expression of stemness-related transcription factors, including c-Myc, Oct4, Sox2 and Lin28, and diminished ALDH(+) populations. Moreover, tumor-bearing mice treated with Rg3 exhibited robust delay of tumor growth and a decrease in tumor-initiating frequency. In addition, we found that Rg3 suppressed breast cancer stem-like properties mainly through inhibiting MYC expression. Mechanistically, Rg3 accelerated the degradation of MYC mRNA by enhancing the expression of the let-7 family, which was demonstrated to bind to the MYC 3' untranslated region (UTR). In conclusion, our findings reveal the remarkable suppressive effect of Rg3 on BCSCs, suggesting that Rg3 is a promising therapeutic treatment for breast cancer.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sleep plays a critical role in several physiologic processes, and sleep disorders increase the risk of depression, dementia, stroke, cancer, and other diseases. Stress is one of the main causes of sleep disorders. Ginseng Radix et Rhizoma and Polygalae Radix have been reported to have effects of calming the mind and intensifying intelligence in Chinese Pharmacopoeia. Traditional Chinese medicine prescriptions composed of Ginseng Radix et Rhizoma and Polygalae Radix (Shen Yuan, SY) are commonly used to treat insomnia, depression, and other psychiatric disorders in clinical practice. Unfortunately, the underlying mechanisms of the SY extract's effect on sleep are still unknown. AIM OF THE STUDY: This study aimed to investigate the hypnotic effect of the SY extract in normal mice and mice with chronic restraint stress (CRS)-induced sleep disorders and elucidate the underlying mechanisms. MATERIALS AND METHODS: The SY extract (0.5 and 1.0 g/kg) was intragastrically administered to normal mice for 1, 14, and 28 days and to CRS-treated mice for 28 days. The open field test (OFT) and pentobarbital sodium-induced sleep test (PST) were used to evaluate the hypnotic effect of the SY extract. Liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay were utilized to detect the levels of neurotransmitters and hormones. Molecular changes at the mRNA and protein levels were determined using real-time quantitative polymerase chain reaction and Western blot analysis to identify the mechanisms by which SY improves sleep disorders. RESULTS: The SY extract decreased sleep latency and increased sleep duration in normal mice. Similarly, the sleep duration of mice subjected to CRS was increased by administering SY. The SY extract increased the levels of tryptophan (Trp) and 5-hydroxytryptamine (5-HT) and the expression of tryptophan hydroxylase 2 (TPH2) in the cortex of normal mice. The SY extract increased the Trp level, transcription and expression of estrogen receptor beta and TPH2 in the cortex in mice with sleep disorders by decreasing the serum corticosterone level, which promoted the synthesis of 5-HT. Additionally, the SY extract enhanced the expression of arylalkylamine N-acetyltransferase, which increased the melatonin level and upregulated the expressions of melatonin receptor-2 (MT2) and Cryptochrome 1 (Cry1) in the hypothalamus of mice with sleep disorders. CONCLUSIONS: The SY extract exerted a hypnotic effect via the Trp/5-HT/melatonin pathway, which augmented the synthesis of 5-HT and melatonin and further increased the expressions of MT2 and Cry1.
Assuntos
Medicamentos de Ervas Chinesas , Melatonina , Distúrbios do Início e da Manutenção do Sono , Humanos , Camundongos , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Triptofano , Serotonina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Melatonina/farmacologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológicoRESUMO
Objective: This study investigates the efficacy of tangerine peel lemon glycerin extract oral spray in improving oral mucosal barrier, reducing microinflammation, and addressing malnutrition in maintenance dialysis (MHD) patients. Methods: Tangerine peel and dry lemon underwent glycerin extraction. From January 2021 to June 2022, 72 MHD patients with thirst were prospectively chosen at Sinopharm Gezhouba Central Hospital. Randomization divided them into an observation group (n=36) and a control group (n=36). Both received routine maintenance dialysis and chronic kidney disease management. Oral conditions were assessed using OHIP-14, a homemade visual thirst score scale, SFR, sAA, and saliva pH. Microinflammatory indexes (CRP, TNF-α, IL-6) and nutritional status indicators (Alb, PA, Hb) were measured. The observation group used 1ml of tangerine peel lemon glycerin extract with a pH value of 5.9~6.1 q6h, while the control group used 1ml of purified water q6h. Results: After 3 months, the observation group showed significant improvement in OHIP-14 and visual thirst score scale (P < .01). Saliva pH, CRP, TNF-α, and IL-6 levels decreased, and SAA activity, SFR, Alb, PA, and Hb levels increased significantly in the observation group compared to the control group (P < .01). Conclusions: Tangerine peel lemon glycerin spray demonstrates promise in improving the oral mucosal barrier, exhibiting antibacterial and anti-inflammatory properties that mitigate microinflammation and malnutrition. This finding suggests a connection between oral health, systemic pathology, psychological state, and social adaptability.
Assuntos
Citrus , Desnutrição , Mucosa Bucal , Extratos Vegetais , Diálise Renal , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Desnutrição/tratamento farmacológico , Desnutrição/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Mucosa Bucal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Glicerol , Adulto , IdosoRESUMO
Introduction and Objectives: Smoking is a risk factor for Covid-19 due to the destruction of heart and lungs from tobacco products. Increased smoking increases complications related to Covid-19, however, the association between chronic obstructive pulmonary disorder (COPD), environmental factors, and how the lung function mediates the association remains unclear. Therefore, our primary objective is to conduct a Mendelian randomization to investigate whether COPD, environmental factors and lung function has a mediating effect between smoking and the severity of COVID-19. Methods: A two-step Mendelian randomization design was employed using genetic data from genome-wide association studies (GWAS). The instrumental variable was the genetic variants (Z) associated with smoking, COPD, lung function (forced expiratory volume per second (FEV1), and COVID-19 phenotypes (hospitalized, severe and overall covid-19) were selected. The first step involved estimating the associations between instruments and their respective phenotypes, while the second step examined the relationships between instruments and outcomes, as well as instruments and mediators. Various sensitivity analyses were conducted to assess the robustness of the findings. Participants: A sample size ranging between 195 773 to 289 887. Measurements: Lung function was measured per second [forced expiratory volume per second (FEV1)], genetic determinants of lifetime smoking index, and varying severities of COVID-19 and COPD. Results: COVID-19 Severe (OR =1.48, 95% CI = 1.10 to 1.98) and COVID-19 Hospitalized (OR = 1.67, 95% CI = 1.42 to 1.97), alongside additional sensitivity analyses showed consistent directional effects. Smoking exacerbated COVID-19's risk in the experimental group more than in control populations: Odds Rations (OR) of 1.19 per standard deviation (SD), based on the lifetime smoking index, and a 95% Confidence Interval (CI) of 1.11 to 1.27. COPD and lung function did not mediate the associations. Conclusions: There exists strong genetic evidence linking environmental factors, smoking and lung function, and COVID-19's severity. Mild COVID-19 is also captured, but to a lesser extent, through minimal evidence. Low lung function exacerbates COPD but does not mediate the implications of smoking on the risk of COVID-19. Our study has implications in the public health policy and messaging for smokers and risks of COVID-19.
Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença Pulmonar Obstrutiva Crônica , Fumar , Humanos , COVID-19/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Risco , SARS-CoV-2/genética , Volume Expiratório Forçado , Masculino , Feminino , Pessoa de Meia-IdadeRESUMO
Due to the malodorous effects and health risks of volatile sulfur compounds (VSCs) emitted from wastewater treatment plants (WWTPs), odor collection devices have been extensively utilized; however, their effectiveness has rarely been tested. In the present investigation, the characteristics of VSCs released in a WWTP equipped with gas collection hoods are methodically examined by gas chromatography. The obtained results indicate that the concentration of VSCs in the ambient air can be substantially reduced, and the primary treatment unit still achieves the highest concentration of VSCs. Compared to WWTPs without odor collection devices, the concentration of H2S in this WWTP is not dominant, but its sensory effects and health risks are still not negligible. Additionally, research on the emission of VSCs from sludge reveals that the total VSCs emitted from dewatering sludge reaches the highest level. Volatile organic sulfur compounds play a dominant role in the component and sensory effects of VSCs released by sludge. This study provides both data and theoretical support for analyzing the effectiveness of odor collection devices in WWTPs, as well as reducing the source of VSCs. The findings can be effectively employed to optimize these devices and improve their performance.
Assuntos
Compostos Orgânicos Voláteis , Purificação da Água , Compostos de Enxofre/análise , Compostos de Enxofre/química , Esgotos , Odorantes/análise , Medição de Risco , Compostos Orgânicos Voláteis/análiseRESUMO
In this paper, the influence of an earthquake on radon exhalation rate of uranium tailings reservoir beach under high temperature environment is studied by using a self-made integrated simulation test device for natural disasters, and a scale model test based on similarity and dimensional laws. The results show that, (1)When the peak acceleration reaches 0.6g, the radon exhalation rate increases sharply with the increase of peak acceleration, and tends to be gentle after 1.0g. (2)Under the action of high temperature, the radon exhalation rate increases rapidly with the increase of high temperature time, and gradually becomes flat after the 4th hour. (3)Compared with loading the earthquake condition only, the coupling effect of high temperatures and earthquakes causes a greater degree of damage to the beach surface of a uranium tailings reservoir under the same acceleration conditions, and the fissure rate and radon exhalation rate of the beach surface are substantially increased.
Assuntos
Terremotos , Monitoramento de Radiação , Radônio , Urânio , Radônio/análise , Temperatura , Urânio/análise , Expiração , Monitoramento de Radiação/métodosRESUMO
BACKGROUND: In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE: This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS: The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS: At a concentration of 25 µM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION: This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.
Assuntos
Glucosídeos , Isoflavonas , Neoplasias Pulmonares , Radiossensibilizantes , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fatores de Crescimento do Endotélio Vascular/metabolismo , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
The pathogenesis of age-related macular degeneration (AMD), a degenerative retinopathy, remains unclear. Administration of anti-vascular endothelial growth factor agents, antioxidants, fundus lasers, photodynamic therapy, and transpupillary warming has proven effective in alleviating symptoms; however, these interventions cannot prevent or reverse AMD. Increasing evidence suggests that AMD risk is linked to changes in the composition, abundance, and diversity of the gut microbiota (GM). Activation of multiple signaling pathways by GM metabolites, including lipopolysaccharides, oxysterols, short-chain fatty acids (SCFAs), and bile acids (BAs), influences retinal physiology. Traditional Chinese medicine (TCM), known for its multi-component and multi-target advantages, can help treat AMD by altering GM composition and regulating the levels of certain substances, such as lipopolysaccharides, reducing oxysterols, and increasing SCFA and BA contents. This review explores the correlation between GM and AMD and interventions for the two to provide new perspectives on treating AMD with TCM.
RESUMO
The reservoir serves as a water source, a flood control structure, a navigational aid, and also impacts the downstream ecosystem as well as the reservoir zone. However, debate exists about effectiveness of cascade reservoirs in controlling the transportation of nutrients, particularly in the Yangtze River basin, which has been significantly affected by reservoir development. This research develops a new model X-NPSEM (X with Nitrogen and Phosphorus Steady-state Reservoir Model) based on biogeochemical processes of nitrogen and phosphorus reaction for investigating the dynamic storage capacity of cascade reservoirs at both reservoir- and watershed scales. Then the cumulative effects of cascade reservoirs and the related mechanism were investigated in Fujiang watershed, China. Based on the results, cascade reservoirs retained 16.3 % of nitrogen fluxes and 37.6 % of phosphorus fluxes annually. Downstream reservoirs have higher retention rates of phosphorus (0.48/d) compared to upstream reservoirs (0.10/d), mainly due to inflow sediment. Nitrogen retention rates show seasonal variations: wet season (0.21/d) and dry season (0.17/d). These fluctuations in nitrogen retention are primarily influenced by changes in temperature rather than other factors such as operation period, nitrogen and phosphorus concentration, or the nitrogen/phosphorus ratio. In upstream, the concentration of sediment entering the reservoir plays a decisive role in the transformation of P retention from sink to source. The X-NPSRM coupler model could be used for global reservoir operation and watershed management.
Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/análise , Monitoramento Ambiental , Nitrogênio/análise , Ecossistema , Poluentes Químicos da Água/análise , ChinaRESUMO
JQ-1 is a typical BRD4 inhibitor with the ability to directly fight tumor cells and evoke antitumor immunity via reducing the expression of PD-L1. However, problems arise with the development of JQ-1 in clinical trials, such as marked lymphoid and hematopoietic toxicity, leading to the investigation of combination therapy. SZU-101 is a TLR7 agonist designed and synthesized by our group with potent immunostimulatory activity. Therefore, we hypothesized that combination therapy of SZU-101 and JQ-1 would target innate immunity and adaptive immunity simultaneously, to achieve a better antitumor efficacy than monotherapy. In this study, the repressive effects of the combination administration on tumor growth and metastasis were demonstrated in both murine breast cancer and melanoma models. In 4T1 tumor-bearing mice, i.t. treatment with SZU-101 in combination with i.p. treatment with JQ-1 suppressed the growth of tumors at both injected and uninjected sites. Combination therapy increased M1/M2 ratio in TAMs, decreased PD-L1 expression and promoted the recruitment of activated CD8+ T cells in the TME. In summary, the improved therapeutic efficacy of the novel combination therapy appears to be feasible for the treatment of a diversity of cancers.
Assuntos
Adenina , Proteínas que Contêm Bromodomínio , Melanoma , Succinatos , Receptor 7 Toll-Like , Animais , Camundongos , Adenina/análogos & derivados , Adjuvantes Imunológicos , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Proteínas Nucleares , Receptor 7 Toll-Like/agonistas , Fatores de Transcrição , Proteínas que Contêm Bromodomínio/antagonistas & inibidoresRESUMO
BACKGROUND: Pretreatment techniques should be introduced before metal ion determination because there is very low content of heavy metals in Chinese medicinal plants and environmental samples. Magnetic dispersive micro solid phase extraction (MDMSPE) has been widely used for the separation and adsorption of heavy metal pollutants in medicinal plants and environmental samples. However, the majority of MDMSPE adsorbents have certain drawbacks, including low selectivity, poor anti-interference ability, and small adsorption capacity. Therefore, modifying currently available adsorption materials has gained attention in research. RESULTS: In this study, a novel adsorbent MCOF-DES based on a magnetic covalent organic framework (MCOF) modified by a new deep eutectic solvent (DES) was synthesized for the first time and used as an adsorbent of MDMSPE. The MDMSPE was combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for selective separation, enrichment, and accurate determination of trace copper ion (Cu2+) in medicinal plants and environmental samples. Various characterization results show the successful preparation of new MCOF-DES. Under the optimal conditions, the enrichment factor (EF) of Cu2+ was 30, the limit of detection (LOD) was 0.16 µg L-1, and the limit of quantitation (LOQ) was 0.54 µg L-1. The results for the determination of Cu2+ were highly consistent with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method. SIGNIFICANCE: The established method based on a new adsorption material MCOF-DES has achieved the selective separation and determination of trace Cu2+ in medicinal and edible homologous medicinal materials (Phyllanthus emblica Linn.) and environmental samples (soil and water), which provides a promising, selective, and sensitive approach for the determination of trace Cu2+ in other real samples.
Assuntos
Estruturas Metalorgânicas , Plantas Medicinais , Cobre , Solventes Eutéticos Profundos , Reprodutibilidade dos Testes , Fenômenos MagnéticosRESUMO
This study aimed to investigate the effects of dietary curcumin supplementation on laying performance, egg quality, egg metabolites, lipid metabolism, antioxidant activity, and intestinal microbial composition of quails in the late laying period. A total of 960 late-laying quails (240-day-old) were randomly divided into 4 groups of 6 replicates each (n = 40/replicate). The experimental diets of the 4 groups consisted of basal diets supplemented with 0, 50, 100, and 200 mg/kg curcumin, respectively. The feeding experiment lasted for 8 wk. The results showed that 200 mg/kg curcumin supplementation decreased mortality and increased eggshell thickness and strength compared with the 0 mg/kg curcumin supplementation during wk 5 to 8. In addition, dietary supplementation of curcumin promoted lipid metabolism, enhanced antioxidant activity, and modified intestinal microbiota structure. In conclusion, dietary supplemented with 200 mg/kg curcumin significantly improved the egg quality of quails in the late laying period, primarily by improving lipid metabolism and selectively regulating the intestinal microbial community.
Assuntos
Curcumina , Microbioma Gastrointestinal , Animais , Antioxidantes/farmacologia , Codorniz , Curcumina/farmacologia , Galinhas/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Óvulo , Suplementos Nutricionais/análise , Dieta/veterináriaRESUMO
Functional dyspepsia(FD) is a prevalent functional gastrointestinal disease characterized by recurrent and long-lasting symptoms that significantly impact the quality of life of patients. Currently, western medicine treatment has not made breakthrough progress and mainly relies on symptomatic therapies such as gastrointestinal motility agents, acid suppressants, antidepressants/anxiolytics, and psychotherapy. However, these treatments have limitations in terms of insufficient effectiveness and safety. Traditional Chinese medicine(TCM) possesses unique advantages in the treatment of FD. Through literature search in China and abroad, it has been found that the mechanisms of TCM in treating FD is associated with various signaling pathways, and research on these signaling pathways and molecular mechanisms has gradually become a focus. The main signaling pathways include the SCF/c-Kit signaling pathway, 5-HT signaling pathway, CRF signaling pathway, AMPK signaling pathway, TRPV1 signaling pathway, NF-κB signaling pathway, and RhoA/ROCK2/MYPT1 signaling pathway. This series of signaling pathways can promote gastrointestinal motility, alleviate anxiety, accelerate gastric emptying, reduce visceral hypersensitivity, and improve duodenal micro-inflammation in the treatment of FD. This article reviewed the research on TCM's regulation of relevant signaling pathways in the treatment of FD, offering references and support for further targeted TCM research in the treatment of FD.
Assuntos
Dispepsia , Humanos , Dispepsia/tratamento farmacológico , Dispepsia/genética , Medicina Tradicional Chinesa , Qualidade de Vida , Fármacos Gastrointestinais/uso terapêutico , Transdução de SinaisRESUMO
Corneal alkali burn remains a clinical challenge in ocular emergency, necessitating the development of effective therapeutic drugs. Here, we observed the arachidonic acid metabolic disorders of corneas induced by alkali burns and aimed to explore the role of Prostaglandin E2 (PGE2), a critical metabolite of arachidonic acid, in the repair of alkali-burned corneas. We found a moderate dosage of PGE2 promoted the alkali-burned corneal epithelial repair, whereas a high dosage of PGE2 exhibited a contrary effect. This divergent effect is attributed to different dosages of PGE2 regulating ANXA1 expression differently. Mechanically, a high dosage of PGE2 induced higher GATA3 expression, followed by enhanced GATA3 binding to the ANXA1 promoter to inhibit ANXA1 expression. In contrast, a moderate dosage of PGE2 increased CREB1 phosphorylation and reduced GATA3 binding to the ANXA1 promoter, promoting ANXA1 expression. We believe PGE2 and its regulatory target ANXA1 could be potential drugs for alkali-burned corneas.